PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (31)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
1.  A Phosphorylation Tag for Uranyl Mediated Protein Purification and Photo Assisted Tag Removal 
PLoS ONE  2014;9(3):e91138.
Most protein purification procedures include an affinity tag fused to either the N or C-terminal end of the protein of interest as well as a procedure for tag removal. Tag removal is not straightforward and especially tag removal from the C-terminal end is a challenge due to the characteristics of enzymes available for this purpose. In the present study, we demonstrate the utility of the divalent uranyl ion in a new procedure for protein purification and tag removal. By employment of a GFP (green florescence protein) recombinant protein we show that uranyl binding to a phosphorylated C-terminal tag enables target protein purification from an E. coli extract by immobilized uranyl affinity chromatography. Subsequently, the tag can be efficiently removed by UV-irradiation assisted uranyl photocleavage. We therefore suggest that the divalent uranyl ion (UO22+) may provide a dual function in protein purification and subsequent C-terminal tag removal procedures.
doi:10.1371/journal.pone.0091138
PMCID: PMC3945016  PMID: 24599526
2.  Potent Antibacterial Antisense Peptide–Peptide Nucleic Acid Conjugates Against Pseudomonas aeruginosa 
Nucleic Acid Therapeutics  2012;22(5):323-334.
Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections in hospital settings, especially with immune compromised patients, and the increasing prevalence of multidrug resistant strains urges search for new drugs with novel mechanisms of action. In this study we introduce antisense peptide–peptide nucleic acid (PNA) conjugates as antibacterial agents against P. aeruginosa. We have designed and optimized antisense peptide–PNA conjugates targeting the translation initiation region of the ftsZ gene (an essential bacterial gene involved in cell division) or the acpP gene (an essential bacterial gene involved in fatty acid synthesis) of P. aeruginosa (PA01) and characterized these compounds according to their antimicrobial activity and mode of action. Four antisense PNA oligomers conjugated to the H-(R-Ahx-R)4-Ahx-βala or the H-(R-Ahx)6-βala peptide exhibited complete growth inhibition of P. aeruginosa strains PA01, PA14, and LESB58 at 1–2 μM concentrations without any indication of bacterial membrane disruption (even at 20 μM), and resulted in specific reduction of the targeted mRNA levels. One of the four compounds showed clear bactericidal activity while the other significantly reduced bacterial survival. These results open the possibility of development of antisense antibacterials for treatment of Pseudomonas infections.
doi:10.1089/nat.2012.0370
PMCID: PMC3464458  PMID: 23030590
3.  “Artifactual” arsenate DNA 
Artificial DNA, PNA & XNA  2012;3(1):1-2.
The recent claim by Wolfe-Simon et al. that the Halomonas bacterial strain GFAJ-1 when grown in arsenate-containing medium with limiting phosphate is able to substitute phosphate with arsenate in biomolecules including nucleic acids and in particular DNA1 arose much skepticism, primarily due to the very limited chemical stability of arsenate esters (see ref. 2 and references therein). A major part of the criticisms was concerned with the insufficient (bio)chemical evidence in the Wolfe-Simon study for the actual chemical incorporation of arsenate in DNA (and/or RNA). Redfield et al. now present evidence that the identification of arsenate DNA was artifactual.
doi:10.4161/adna.19672
PMCID: PMC3368811  PMID: 22679526
arsenate; bacteria; DNA; genetic material; life
4.  Targeted gene correction using psoralen, chlorambucil and camptothecin conjugates of triplex forming peptide nucleic acid (PNA) 
Artificial DNA, PNA & XNA  2011;2(1):23-32.
Gene correction activation effects of a small series of triplex forming peptide nucleic acid (PNA) covalently conjugated to the DNA interacting ligands psoralen, chlorambucil and camptothecin targeted proximal to a stop codon mutation in an EGFP reporter gene were studied. A 15-mer homopyrimidine PNA conjugated to the topoisomerase I inhibitor camptothecin was found to increase the frequency of repair domain mediated gene correctional events of the EGFP reporter in an in vitro HeLa cell nuclear extract assay, whereas PNA psoralen or chlorambucil conjugates both of which form covalent and also interstrand crosslinked adducts with dsDNA dramatically decreased the frequency of targeted repair/correction. The PNA conjugates were also studied in mammalian cell lines upon transfection of PNA bound EGFP reporter vector and scoring repair of the EGFP gene by FACS analysis of functional EGFP expression. Consistent with the extract experiments, treatment with adduct forming PNA conjugates (psoralen and chlorambucil) resulted in a decrease in background correction frequencies in transiently transfected cells, whereas unmodified PNA or the PNA-camptothecin conjugate had little or no effect. These results suggest that simple triplex forming PNAs have little effect on proximal gene correctional events whereas PNA conjugates capable of forming DNA adducts and interstrand crosslinks are strong inhibitors. Most interestingly the PNA conjugated to the topoisomerase inhibitor, camptothecin enhanced repair in nuclear extract. Thus the effects and use of camptothecin conjugates in gene targeted repair merit further studies.
doi:10.4161/adna.2.1.15553
PMCID: PMC3116579  PMID: 21686249
PNA; triplex; gene correction; repair; DNA modification
5.  Natural - synthetic - artificial! 
Artificial DNA, PNA & XNA  2010;1(1):58-59.
The terms “natural,” “synthetic” and “artificial” are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life.
doi:10.4161/adna.1.1.12934
PMCID: PMC3109441  PMID: 21687528
synthetic chromosomes; synthetic cells; artificial cells; artificial life
6.  Introducing Artificial DNA: PNA & XNA 
doi:10.4161/adna.1.1.12932
PMCID: PMC3109443  PMID: 21687520
7.  Polyamines preferentially interact with bent adenine tracts in double-stranded DNA 
Nucleic Acids Research  2005;33(6):1790-1803.
Polyamines, such as putrescine, spermidine and spermine, have indirectly been linked with the regulation of gene expression, and their concentrations are typically increased in cancer cells. Although effects on transcription factor binding to cognate DNA targets have been demonstrated, the mechanisms of the biological action of polyamines is poorly understood. Employing uranyl photo-probing we now demonstrate that polyamines at submillimolar concentrations bind preferentially to bent adenine tracts in double-stranded DNA. These results provide the first clear evidence for the sequence-specific binding of polyamines to DNA, and thereby suggest a mechanism by which the cellular effects of polyamines in terms of differential gene transcriptional activity could, at least partly, be a direct consequence of sequence-specific interactions of polyamines with promoters at the DNA sequence level.
doi:10.1093/nar/gki319
PMCID: PMC1069516  PMID: 15788751
8.  Cell number and transfection volume dependent peptide nucleic acid antisense activity by cationic delivery methods 
Artificial DNA, PNA & XNA  2012;3(1):22-30.
Efficient intracellular delivery is essential for high activity of nucleic acids based therapeutics, including antisense agents. Several strategies have been developed and practically all rely on auxiliary transfection reagents such as cationic lipids, cationic polymers and cell penetrating peptides as complexing agents and carriers of the nucleic acids. However, uptake mechanisms remain rather poorly understood, and protocols always require optimization of transfection parameters. Considering that cationic transfection complexes bind to and thus may up-concentrate on the cell surface, we have now quantitatively compared the cellular activity (in the pLuc705 HeLa cell splice correction system) of PNA antisense oligomers using lipoplex delivery of cholesterol- and bisphosphonate-PNA conjugates, polyplex delivery via a PNA-polyethyleneimine conjugate and CPP delivery via a PNA-octaarginine conjugate upon varying the cell culture transfection volume (and cell density) at fixed PNA concentration. The results show that for all delivery modalities the cellular antisense activity increases (less than proportionally) with increasing volume (in some cases accompanied with increased toxicity), and that this effect is more pronounced at higher cell densities. These results emphasize that transfection efficacy using cationic carriers is critically dependent on parameters such as transfection volume and cell density, and that these must be taken into account when comparing different delivery regimes.
doi:10.4161/adna.19906
PMCID: PMC3368813  PMID: 22679530
antisense; cellular delivery; lipoplex; octaarginine (CPP); peptide nucleic acid (PNA); polyethyleneimine (PEI)
9.  DNA-nanostructure-assembly by sequential spotting 
Background
The ability to create nanostructures with biomolecules is one of the key elements in nanobiotechnology. One of the problems is the expensive and mostly custom made equipment which is needed for their development. We intended to reduce material costs and aimed at miniaturization of the necessary tools that are essential for nanofabrication. Thus we combined the capabilities of molecular ink lithography with DNA-self-assembling capabilities to arrange DNA in an independent array which allows addressing molecules in nanoscale dimensions.
Results
For the construction of DNA based nanostructures a method is presented that allows an arrangement of DNA strands in such a way that they can form a grid that only depends on the spotted pattern of the anchor molecules. An atomic force microscope (AFM) has been used for molecular ink lithography to generate small spots. The sequential spotting process allows the immobilization of several different functional biomolecules with a single AFM-tip. This grid which delivers specific addresses for the prepared DNA-strand serves as a two-dimensional anchor to arrange the sequence according to the pattern. Once the DNA-nanoarray has been formed, it can be functionalized by PNA (peptide nucleic acid) to incorporate advanced structures.
Conclusions
The production of DNA-nanoarrays is a promising task for nanobiotechnology. The described method allows convenient and low cost preparation of nanoarrays. PNA can be used for complex functionalization purposes as well as a structural element.
doi:10.1186/1477-3155-9-54
PMCID: PMC3248840  PMID: 22099392
10.  Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers 
Artificial DNA, PNA & XNA  2011;2(3):90-99.
We have explored the merits of a novel delivery strategy for the antisense oligomers based on cell penetrating peptide (CPP) conjugated to a carrier PNA with sequence complementary to part of the antisense oligomer. The effect of these carrier CPP-PNAs was evaluated by using antisense PNA targeting splicing correction of the mutated luciferase gene in the HeLa pLuc705 cell line, reporting cellular (nuclear) uptake of the antisense PNA via luciferase activity measurement. Carrier CPP-PNA constructs were studied in terms of construct modification (with octaarginine and/or decanoic acid) and carrier PNA length (to adjust binding affinity). In general, the carrier CPP-PNA constructs including the ones with decanoyl modification provided significant increase of the activity of unmodified antisense PNA as well as of antisense octaarginine-PNA conjugates. Antisense activity, and by inference cellular delivery, of unmodified antisense PNA was enhanced at least 20-fold at 6 μM upon the complexation with an equimolar amount of nonamer carrier decanoyl-CPP-PNA (Deca-cPNA1(9)-(D-Arg)8). The antisense activity of a CPP-PNA ((D-Arg)8-asPNA) (at 2 μM) was improved 6-fold and 8-fold by a heptamer carrier CPP-PNA (cPNA1(7)-(D-Arg)8) and hexamer carrier decanoyl-CPP-PNA (Deca-cPNA1(6)-(D-Arg)8), respectively, without showing significant additional cellular toxicity. Most interestingly, the activity reached the same level obtained by enhancement with endosomolytic chloroquine (CQ) treatment, suggesting that the carrier might facilitate endosomal escape. Furthermore, 50% downregulation of luciferase expression at 60 nM siRNA was obtained using this carrier CPP-PNA delivery strategy (with CQ co-treatment) for a single stranded antisense RNA targeting normal luciferase mRNA. These results indicated that CPP-PNA carriers may be used as effective cellular delivery vectors for different types of antisense oligomers and also allows use of combinations of (at least two) different CPP ligands.
PMCID: PMC3324339  PMID: 22567192
antisense; carrier; cell penetrating peptide (CPP); cellular delivery; peptide nucleic acid (PNA); siRNA
11.  Artificial DNA structures 
doi:10.4161/adna.2.2.17085
PMCID: PMC3166487  PMID: 21912724
12.  Sensitive detection of nucleic acids by PNA hybridization directed co-localization of fluorescent beads 
Artificial DNA, PNA & XNA  2011;2(2):60-66.
We have designed a pair of biotinylated peptide nucleic acid (PNA) probes targeting two sequences in 18S rRNA (from the parasite Trypanosoma brucei) at a distance of 191 nt (corresponding to maximum distance of ca. 60 nm) from each other. The PNA probes were individually bound to (strept)avidin-coated fluorescent beads, differing in size and color [green beads (1 µm) and red beads (5.9 µm)], thereby allowing distinct detection of each PNA probe by conventional fluorescence microscopy. These two PNA beads showed easily detectable co-localization when simultaneously hybridizing to a target nucleic acid. The assay detected the parasite 18S rRNA down to 1.6 fmol while there was no such co-localization visible with human 18S rRNA not containing the PNA targets. Furthermore, the assay showed positive detection with 1.6 ng of total RNA (corresponding to RNA from ca. 300 parasites). Upon further optimization this method may provide a new tool for a diagnosis of Human African Trypanosomiasis (HAT) and it may more generally have applications within diagnostics for (neglected) infectious diseases.
doi:10.4161/adna.2.2.16562
PMCID: PMC3166491  PMID: 21912728
diagnostics; fluorescence microscopy; fluorescent bead; PNA; ribosomal RNA; Trypanosome
13.  Efficiency of Cellular Delivery of Antisense Peptide Nucleic Acid by Electroporation Depends on Charge and Electroporation Geometry 
Oligonucleotides  2011;21(1):29-37.
Electroporation is potentially a very powerful technique for both in vitro cellular and in vivo drug delivery, particularly relating to oligonucleotides and their analogs for genetic therapy. Using a sensitive and quantitative HeLa cell luciferase RNA interference mRNA splice correction assay with a functional luciferase readout, we demonstrate that parameters such as peptide nucleic acid (PNA) charge and the method of electroporation have dramatic influence on the efficiency of productive delivery. In a suspended cell electroporation system (cuvettes), a positively charged PNA (+8) was most efficiently transferred, whereas charge neutral PNA was more effective in a microtiter plate electrotransfer system for monolayer cells. Surprisingly, a negatively charged (−23) PNA did not show appreciable activity in either system. Findings from the functional assay were corroborated by pulse parameter variations, polymerase chain reaction, and confocal microscopy. In conclusion, we have found that the charge of PNA and electroporation system combination greatly influences the transfer efficiency, thereby illustrating the complexity of the electroporation mechanism.
doi:10.1089/oli.2010.0266
PMCID: PMC3045790  PMID: 21235293
14.  Natural Arsenate DNA? 
Artificial DNA, PNA & XNA  2011;2(1):4-5.
The recent paper by Wolfe-Simon et al.1 reporting a bacterial strain, which is able to grow in high concentrations of arsenate, apparently in the absence of phosphate, and claims that in this strain arsenate is substituting for phosphate, e.g. in nucleic acids (Figure 1), was highly profiled, attracted broad attention, and almost immediately resulted in heavy scientific criticism (see e.g. 2–7).
doi:10.4161/adna.2.1.15657
PMCID: PMC3116578  PMID: 21686246
Arsenate; DNA; evolution; origin of life; bacteria
15.  A novel pseudo-complementary PNA G-C base pair 
Artificial DNA, PNA & XNA  2011;2(1):33-37.
Pseudo-complementary oligonucleotide analogues and mimics provide novel opportunities for targeting duplex structures in RNA and DNA. Previously, a pseudo-complementary A-T base pair has been introduced. Towards sequence unrestricted targeting, a pseudo-complementary G-C base pair consisting of the unnatural nucleobases n6-methoxy-2,6-diaminopurine (previously described in a DNA context) and N4-benzoylcytosine is now presented for design of pseudo-complementary PNA oligomers (pcPNAs).
doi:10.4161/adna.2.1.15554
PMCID: PMC3116581  PMID: 21686250
DNA recognition; hybridization; nucleobases; synthesis; PNA
16.  Modulation of mdm2 pre-mRNA splicing by 9-aminoacridine-PNA (peptide nucleic acid) conjugates targeting intron-exon junctions 
BMC Cancer  2010;10:342.
Background
Modulation of pre-mRNA splicing by antisense molecules is a promising mechanism of action for gene therapeutic drugs. In this study, we have examined the potential of peptide nucleic acid (PNA) 9-aminoacridine conjugates to modulate the pre-mRNA splicing of the mdm2 human cancer gene in JAR cells.
Methods
We screened 10 different 15 mer PNAs targeting intron2 at both the 5' - and the 3'-splice site for their effects on the splicing of mdm2 using RT-PCR analysis. We also tested a PNA (2512) targeting the 3'-splice site of intron3 with a complementarity of 4 bases to intron3 and 11 bases to exon4 for its splicing modulation effect. This PNA2512 was further tested for the effects on the mdm2 protein level as well as for inhibition of cell growth in combination with the DNA damaging agent camptothecin (CPT).
Results
We show that several of these PNAs effectively inhibit the splicing thereby producing a larger mRNA still containing intron2, while skipping of exon3 was not observed by any of these PNAs. The most effective PNA (PNA2406) targeting the 3'-splice site of intron2 had a complementarity of 4 bases to intron2 and 11 bases to exon3. PNA (2512) targeting the 3'-splice site of intron3 induced both splicing inhibition (intron3 skipping) and skipping of exon4. Furthermore, treatment of JAR cells with this PNA resulted in a reduction in the level of MDM2 protein and a concomitant increase in the level of tumor suppressor p53. In addition, a combination of this PNA with CPT inhibited cell growth more than CPT alone.
Conclusion
We have identified several PNAs targeting the 5'- or 3'-splice sites in intron2 or the 3'-splice site of intron3 of mdm2 pre-mRNA which can inhibit splicing. Antisense targeting of splice junctions of mdm2 pre-mRNA may be a powerful method to evaluate the cellular function of MDM2 splice variants as well as a promising approach for discovery of mdm2 targeted anticancer drugs.
doi:10.1186/1471-2407-10-342
PMCID: PMC2910690  PMID: 20591158
17.  High-affinity triplex targeting of double stranded DNA using chemically modified peptide nucleic acid oligomers 
Nucleic Acids Research  2009;37(13):4498-4507.
While sequence-selective dsDNA targeting by triplex forming oligonucleotides has been studied extensively, only very little is known about the properties of PNA–dsDNA triplexes—mainly due to the competing invasion process. Here we show that when appropriately modified using pseudoisocytosine substitution, in combination with (oligo)lysine or 9-aminoacridine conjugation, homopyrimidine PNA oligomers bind complementary dsDNA targets via triplex formation with (sub)nanomolar affinities (at pH 7.2, 150 mM Na+). Binding affinity can be modulated more than 1000-fold by changes in pH, PNA oligomer length, PNA net charge and/or by substitution of pseudoisocytosine for cytosine, and conjugation of the DNA intercalator 9-aminoacridine. Furthermore, 9-aminoacridine conjugation also strongly enhanced triplex invasion. Specificity for the fully matched target versus one containing single centrally located mismatches was more than 150-fold. Together the data support the use of homopyrimidine PNAs as efficient and sequence selective tools in triplex targeting strategies under physiological relevant conditions.
doi:10.1093/nar/gkp437
PMCID: PMC2715256  PMID: 19474349
18.  Targeted correction of a thalassemia-associated β-globin mutation induced by pseudo-complementary peptide nucleic acids 
Nucleic Acids Research  2009;37(11):3635-3644.
β-Thalassemia is a genetic disorder caused by mutations in the β-globin gene. Triplex-forming oligonucleotides and triplex-forming peptide nucleic acids (PNAs) have been shown to stimulate recombination in mammalian cells via site-specific binding and creation of altered helical structures that provoke DNA repair. However, the use of these molecules for gene targeting requires homopurine tracts to facilitate triple helix formation. Alternatively, to achieve binding to mixed-sequence target sites for the induced gene correction, we have used pseudo-complementary PNAs (pcPNAs). Due to steric hindrance, pcPNAs are unable to form pcPNA–pcPNA duplexes but can bind to complementary DNA sequences via double duplex-invasion complexes. We demonstrate here that pcPNAs, when co-transfected with donor DNA fragments, can promote single base pair modification at the start of the second intron of the beta-globin gene. This was detected by the restoration of proper splicing of transcripts produced from a green fluorescent protein-beta globin fusion gene. We also demonstrate that pcPNAs are effective in stimulating recombination in human fibroblast cells in a manner dependent on the nucleotide excision repair factor, XPA. These results suggest that pcPNAs can be effective tools to induce heritable, site-specific modification of disease-related genes in human cells without purine sequence restriction.
doi:10.1093/nar/gkp217
PMCID: PMC2699504  PMID: 19364810
19.  Emergence of protocellular growth laws 
Template-directed replication is known to obey a parabolic growth law due to product inhibition (Sievers & Von Kiedrowski 1994 Nature 369, 221; Lee et al. 1996 Nature 382, 525; Varga & Szathmáry 1997 Bull. Math. Biol. 59, 1145). We investigate a template-directed replication with a coupled template catalysed lipid aggregate production as a model of a minimal protocell and show analytically that the autocatalytic template–container feedback ensures balanced exponential replication kinetics; both the genes and the container grow exponentially with the same exponent. The parabolic gene replication does not limit the protocellular growth, and a detailed stoichiometric control of the individual protocell components is not necessary to ensure a balanced gene–container growth as conjectured by various authors (Gánti 2004 Chemoton theory). Our analysis also suggests that the exponential growth of most modern biological systems emerges from the inherent spatial quality of the container replication process as we show analytically how the internal gene and metabolic kinetics determine the cell population's generation time and not the growth law (Burdett & Kirkwood 1983 J. Theor. Biol. 103, 11–20; Novak et al. 1998 Biophys. Chem. 72, 185–200; Tyson et al. 2003 Curr. Opin. Cell Biol. 15, 221–231). Previous extensive replication reaction kinetic studies have mainly focused on template replication and have not included a coupling to metabolic container dynamics (Stadler et al. 2000 Bull. Math. Biol. 62, 1061–1086; Stadler & Stadler 2003 Adv. Comp. Syst. 6, 47). The reported results extend these investigations. Finally, the coordinated exponential gene–container growth law stemming from catalysis is an encouraging circumstance for the many experimental groups currently engaged in assembling self-replicating minimal artificial cells (Szostak 2001 et al. Nature 409, 387–390; Pohorille & Deamer 2002 Trends Biotech. 20 123–128; Rasmussen et al. 2004 Science 303, 963–965; Szathma´ry 2005 Nature 433, 469–470; Luisi et al. 2006 Naturwissenschaften 93, 1–13).1
doi:10.1098/rstb.2007.2076
PMCID: PMC2442398  PMID: 17472929
protocell integration; replication; metabolism; kinetics
20.  Subnanomolar antisense activity of phosphonate-peptide nucleic acid (PNA) conjugates delivered by cationic lipids to HeLa cells 
Nucleic Acids Research  2008;36(13):4424-4432.
In the search of facile and efficient methods for cellular delivery of peptide nucleic acids (PNA), we have synthesized PNAs conjugated to oligophosphonates via phosphonate glutamine and bis-phosphonate lysine amino acid derivatives thereby introducing up to twelve phosphonate moieties into a PNA oligomer. This modification of the PNA does not interfere with the nucleic acid target binding affinity based on thermal stability of the PNA/RNA duplexes. When delivered to cultured HeLa pLuc705 cells by Lipofectamine, the PNAs showed dose-dependent nuclear antisense activity in the nanomolar range as inferred from induced luciferase activity as a consequence of pre-mRNA splicing correction by the antisense-PNA. Antisense activity depended on the number of phosphonate moieties and the most potent hexa-bis-phosphonate-PNA showed at least 20-fold higher activity than that of an optimized PNA/DNA hetero-duplex. These results indicate that conjugation of phosphonate moieties to the PNA can dramatically improve cellular delivery mediated by cationic lipids without affecting on the binding affinity and sequence discrimination ability, exhibiting EC50 values down to one nanomolar. Thus the intracellular efficacy of PNA oligomers rival that of siRNA and the results therefore emphasize that provided sufficient in vivo bioavailability of PNA can be achieved these molecules may be developed into potent gene therapeutic drugs.
doi:10.1093/nar/gkn401
PMCID: PMC2490735  PMID: 18596083
21.  Site-directed gene mutation at mixed sequence targets by psoralen-conjugated pseudo-complementary peptide nucleic acids 
Nucleic Acids Research  2007;35(22):7604-7613.
Sequence-specific DNA-binding molecules such as triple helix-forming oligonucleotides (TFOs) provide a means for inducing site-specific mutagenesis and recombination at chromosomal sites in mammalian cells. However, the utility of TFOs is limited by the requirement for homopurine stretches in the target duplex DNA. Here, we report the use of pseudo-complementary peptide nucleic acids (pcPNAs) for intracellular gene targeting at mixed sequence sites. Due to steric hindrance, pcPNAs are unable to form pcPNA–pcPNA duplexes but can bind to complementary DNA sequences by Watson–Crick pairing via double duplex-invasion complex formation. We show that psoralen-conjugated pcPNAs can deliver site-specific photoadducts and mediate targeted gene modification within both episomal and chromosomal DNA in mammalian cells without detectable off-target effects. Most of the induced psoralen-pcPNA mutations were single-base substitutions and deletions at the predicted pcPNA-binding sites. The pcPNA-directed mutagenesis was found to be dependent on PNA concentration and UVA dose and required matched pairs of pcPNAs. Neither of the individual pcPNAs alone had any effect nor did complementary PNA pairs of the same sequence. These results identify pcPNAs as new tools for site-specific gene modification in mammalian cells without purine sequence restriction, thereby providing a general strategy for designing gene targeting molecules.
doi:10.1093/nar/gkm666
PMCID: PMC2190703  PMID: 17977869
22.  Cellular antisense activity of peptide nucleic acid (PNAs) targeted to HIV-1 polypurine tract (PPT) containing RNA 
Nucleic Acids Research  2007;35(12):3907-3917.
DNA and RNA oligomers that contain stretches of guanines can associate to form stable secondary structures including G-quadruplexes. Our study shows that the (UUAAAAGAAAAGGGGGGAU) RNA sequence, from the human immunodeficiency virus type 1 (HIV-1 polypurine tract or PPT sequence) forms in vitro a stable folded structure involving the G-run. We have investigated the ability of pyrimidine peptide nucleic acid (PNA) oligomers targeted to the PPT sequence to invade the folded RNA and exhibit biological activity at the translation level in vitro and in cells. We find that PNAs can form stable complexes even with the structured PPT RNA target at neutral pH. We show that T-rich PNAs, namely the tridecamer-I PNA (C4T4CT4) forms triplex structures whereas the C-rich tridecamer-II PNA (TC6T4CT) likely forms a duplex with the target RNA. Interestingly, we find that both C-rich and T-rich PNAs arrested in vitro translation elongation specifically at the PPT target site. Finally, we show that T-rich and C-rich tridecamer PNAs that have been identified as efficient and specific blockers of translation elongation in vitro, specifically inhibit translation in streptolysin-O permeabilized cells where the PPT target sequence has been introduced upstream the reporter luciferase gene.
doi:10.1093/nar/gkm374
PMCID: PMC1919497  PMID: 17537815
23.  On the stability of peptide nucleic acid duplexes in the presence of organic solvents 
Nucleic Acids Research  2007;35(10):3367-3374.
Nucleic acid double helices are stabilized by hydrogen bonding and stacking forces (a combination of hydrophobic, dispersive and electrostatic forces) of the base pairs in the helix. One would predict the hydrogen bonding contributions to increase and the stacking contributions to decrease as the water activity in the medium decreases. Study of nucleobase paired duplexes in the absence of water and ultimately in pure aprotic, non-polar organic solvents is not possible with natural phosphodiester nucleic acids due to the ionic phosphate groups and the associated cations, but could be possible with non-ionic nucleic acid analogues or mimics such as peptide nucleic acids. We now report that peptide nucleic acid (PNA) (in contrast to DNA) duplexes show almost unaffected stability in up to 70% dimethylformamide (DMF) or dioxane, and extrapolation of the data to conditions of 100% organic solvents indicates only minor (or no) destabilization of the PNA duplexes. Our data indicate that stacking forces contribute little if at all to the duplex stability under these conditions. The differences in behaviour between the PNA and the DNA duplexes are attributed to the differences in hydration and counter ion release rather than to the differences in nucleobase interaction. These results support the possibility of having stable nucleobase paired double helices in organic solvents.
doi:10.1093/nar/gkm210
PMCID: PMC1904262  PMID: 17478520
25.  Structural diversity of target-specific homopyrimidine peptide nucleic acid–dsDNA complexes 
Nucleic Acids Research  2006;34(20):5790-5799.
Sequence-selective recognition of double-stranded (ds) DNA by homopyrimidine peptide nucleic acid (PNA) oligomers can occur by major groove triplex binding or by helix invasion via triplex P-loop formation. We have compared the binding of a decamer, a dodecamer and a pentadecamer thymine–cytosine homopyrimidine PNA oligomer to a sequence complementary homopurine target in duplex DNA using gel-shift and chemical probing analyses. We find that all three PNAs form stable triplex invasion complexes, and also conventional triplexes with the dsDNA target. Triplexes form with much faster kinetics than invasion complexes and prevail at lower PNA concentrations and at shorter incubation times. Furthermore, increasing the ionic strength strongly favour triplex formation over invasion as the latter is severely inhibited by cations. Whereas a single triplex invasion complex is formed with the decameric PNA, two structurally different target-specific invasion complexes were characterized for the dodecameric PNA and more than five for the pentadecameric PNA. Finally, it is shown that isolated triplex complexes can be converted to specific invasion complexes without dissociation of the Hoogsteen base-paired triplex PNA. These result demonstrate a clear example of a ‘triplex first’ mechanism for PNA helix invasion.
doi:10.1093/nar/gkl736
PMCID: PMC1635314  PMID: 17053099

Results 1-25 (31)