PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Design and evaluation of locked nucleic acid-based splice-switching oligonucleotides in vitro 
Nucleic Acids Research  2014;42(12):8174-8187.
Antisense-mediated modulation of pre-mRNA splicing is an attractive therapeutic strategy for genetic diseases. Currently, there are few examples of modulation of pre-mRNA splicing using locked nucleic acid (LNA) antisense oligonucleotides, and, in particular, no systematic study has addressed the optimal design of LNA-based splice-switching oligonucleotides (LNA SSOs). Here, we designed a series of LNA SSOs complementary to the human dystrophin exon 58 sequence and evaluated their ability to induce exon skipping in vitro using reverse transcription-polymerase chain reaction. We demonstrated that the number of LNAs in the SSO sequence and the melting temperature of the SSOs play important roles in inducing exon skipping and seem to be key factors for designing efficient LNA SSOs. LNA SSO length was an important determinant of activity: a 13-mer with six LNA modifications had the highest efficacy, and a 7-mer was the minimal length required to induce exon skipping. Evaluation of exon skipping activity using mismatched LNA/DNA mixmers revealed that 9-mer LNA SSO allowed a better mismatch discrimination. LNA SSOs also induced exon skipping of endogenous human dystrophin in primary human skeletal muscle cells. Taken together, our findings indicate that LNA SSOs are powerful tools for modulating pre-mRNA splicing.
doi:10.1093/nar/gku512
PMCID: PMC4081108  PMID: 24935206
2.  Triplet Analysis That Identifies Unpaired Regions of Functional RNAs 
Journal of Nucleic Acids  2011;2011:471843.
We developed a novel method for analyzing RNA sequences, deemed triplet analysis, and applied the method in an in vitro RNA selection experiment in which HIV-1 Tat was the target. Aptamers are nucleic acids that bind a desired target (bait), and to date, many aptamers have been identified by in vitro selection from enough concentrated libraries in which many RNAs had an obvious consensus primary sequence after sufficient cycles of the selection. Therefore, the higher-order structural features of the aptamers that are indispensable for interaction with the bait must be determined by additional investigation of the aptamers. In contrast, our triplet analysis enabled us to extract important information on functional primary and secondary structure from minimally concentrated RNA libraries. As a result, by using our method, an important unpaired region that is similar to the bulge of TAR was readily predicted from a partially concentrated library in which no consensus sequence was revealed by a conventional sequence analysis. Moreover, our analysis method may be used to assess a variety of structural motifs with desired function.
doi:10.4061/2011/471843
PMCID: PMC3176430  PMID: 21941630
3.  Pyrrolidinyl peptide nucleic acid with α/β-peptide backbone 
Artificial DNA, PNA & XNA  2011;2(2):50-59.
We describe herein a new conformationally constrained analog of PNA carrying an alternating α/β amino acid backbone consisting of (2′R,4′R)-nucleobase-subtituted proline and (1S,2S)-2-aminocyclopentanecarboxylic acid (acpcPNA). The acpcPNA has been synthesized and evaluated for DNA, RNA and self-pairing properties by thermal denaturation experiments. It can form antiparallel hybrids with complementary DNA with high affinity and sequence specificity. Unlike other PNA systems, the thermal stability of acpcPNA·DNA hybrid is largely independent of G+C contents, and is generally higher than that of acpcPNA·RNA hybrid with the same sequence. Thermodynamic parameters analysis suggest that the A·T base pairs in the acpcPNA·DNA hybrids are enthalpically stabilized over G·C pairs. The acpcPNA also shows a hitherto unreported behavior, namely the inability to form self-pairing hybrids. These unusual properties should make the new acpcPNA a potentially useful candidate for various applications including microarray probes and antigene agents.
doi:10.4161/adna.2.2.16340
PMCID: PMC3166490  PMID: 21912727
peptide nucleic acid; nucleic acid; DNA recognition; RNA recognition; pre-organization; foldamer; α/β-peptide
4.  Thermodynamic stability of base pairs between 2-hydroxyadenine and incoming nucleotides as a determinant of nucleotide incorporation specificity during replication 
Nucleic Acids Research  2001;29(16):3289-3296.
We investigated the thermodynamic stability of double-stranded DNAs with an oxidative DNA lesion, 2-hydroxyadenine (2-OH-Ade), in two different sequence contexts (5′-GA*C-3′ and 5′-TA*A-3′, A* represents 2-OH-Ade). When an A*–N pair (N, any nucleotide base) was located in the center of a duplex, the thermodynamic stabilities of the duplexes were similar for all the natural bases except A (N = T, C and G). On the other hand, for the duplexes with the A*–N pair at the end, which mimic the nucleotide incorporation step, the stabilities of the duplexes were dependent on their sequence. The order of stability is T > G > C >> A in the 5′-GA*C-3′ sequences and T > A > C > G in the 5′-TA*A-3′ sequences. Because T/G/C and T/A are nucleotides incorporated opposite to 2-OH-Ade in the 5′-GA*C-3′ and 5′-TA*A-3′ sequences, respectively, these results agree with the tendency of mutagenic misincorporation of the nucleotides opposite to 2-OH-Ade in vitro. Thus, the thermodynamic stability of the A*–N base pair may be an important factor for the mutation spectra of 2-OH-Ade.
PMCID: PMC55858  PMID: 11504865

Results 1-4 (4)