PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (26)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Neuropeptide Y Stimulates Proliferation and Migration of Vascular Smooth Muscle Cells from Pregnancy Hypertensive Rats via Y1 and Y5 Receptors 
PLoS ONE  2015;10(7):e0131124.
The increased proliferation and migration of vascular smooth muscle cells (VSMCs) play important roles in pathophysiological remodeling of arteries during hypertension in pregnancy. However, the mechanisms involved in this process remain unclear. We hypothesized that Neuropeptide Y (NPY), which is a potent mitogenic peptide, participates in modulating proliferation and migration of VSMCs during hypertension in pregnancy. Using pregnant hypertensive rats, induced by intraperitoneal injection of L-nitro-arginine methylester (L-NAME), the plasma concentration of NPY was detected. Open angle, which reflects the non-uniform remodeling with high sensitivity, was used to detect the pathophysiological vascular remodeling in vivo. The results revealed that NPY concentration and artery open angle were both significantly increased in rats with hypertension in pregnant. The underlying mechanism of elevated NPY on vascular remodeling were further analyzed by using cultured VSMCs in vitro. In cultured VSMCs, NPY most effectively stimulated the migration and proliferation of VSMCs at 10-6 mol/L, similar to the plasma concentration in L-NAME hypertension in pregnant rats. NPY up-regulated the expressions of both Y1 and Y5 receptors, increased the phosphorylations of STAT3 on Tyr705 and Ser727 residues, and induced the expression of c-Fos. The NPY-induced VSMCs proliferation was reduced by Y5 receptor antagonist, and fully blocked by combinations with other antagonist, such as Y2+Y5, Y1+Y5, and Y1+Y2+Y5. In contrast, the NPY-induced VSMC migration was blocked by either Y receptor antagonist or any combination of Y receptor antagonists. These results suggest that the elevated plasma concentration of NPY during hypertension in pregnancy may induce VSMC proliferation mainly via Y5 receptor, which subsequently modulate STAT3 and c-Fos signaling pathways to result in the vascular remodeling. These results also suggest that NPY mainly acts on VSMCs in vitro via Y1, Y5 receptors and in vascular tissues in vivo via Y5 receptor.
doi:10.1371/journal.pone.0131124
PMCID: PMC4488588  PMID: 26131716
2.  Bio-Inspired Aggregation Control of Carbon Nanotubes for Ultra-Strong Composites 
Scientific Reports  2015;5:11533.
High performance nanocomposites require well dispersion and high alignment of the nanometer-sized components, at a high mass or volume fraction as well. However, the road towards such composite structure is severely hindered due to the easy aggregation of these nanometer-sized components. Here we demonstrate a big step to approach the ideal composite structure for carbon nanotube (CNT) where all the CNTs were highly packed, aligned, and unaggregated, with the impregnated polymers acting as interfacial adhesions and mortars to build up the composite structure. The strategy was based on a bio-inspired aggregation control to limit the CNT aggregation to be sub 20–50 nm, a dimension determined by the CNT growth. After being stretched with full structural relaxation in a multi-step way, the CNT/polymer (bismaleimide) composite yielded super-high tensile strengths up to 6.27–6.94 GPa, more than 100% higher than those of carbon fiber/epoxy composites, and toughnesses up to 117–192 MPa. We anticipate that the present study can be generalized for developing multifunctional and smart nanocomposites where all the surfaces of nanometer-sized components can take part in shear transfer of mechanical, thermal, and electrical signals.
doi:10.1038/srep11533
PMCID: PMC4476433  PMID: 26098627
3.  Prognostic Role of Phospho-STAT3 in Patients with Cancers of the Digestive System: A Systematic Review and Meta-Analysis 
PLoS ONE  2015;10(5):e0127356.
Objective
The definite prognostic role of p-STAT3 has not been well defined. We performed a meta-analysis evaluating the prognostic role of p-STAT3 expression in patients with digestive system cancers.
Methods
We searched the available articles reporting the prognostic value of p-STAT3 in patients with cancers of the digestive system, mainly including colorectal cancer, gastric cancer, hepatocellular carcinoma, esophagus cancer and pancreatic cancer. The pooled hazard ratios (HRs) with 95 % confidence intervals (95 % CIs) of overall survival (OS) and disease-free survival (DFS) were used to assess the prognostic role of p-STAT3 expression level in cancer tissues. And the association between p-STAT3 expression and clinicopathological characteristics was evaluated.
Results
A total of 22 studies with 3585 patients were finally enrolled in the meta-analysis. The results showed that elevated p-STAT3 expression level predicted inferior OS (HR=1.809, 95% CI: 1.442-2.270, P<0.001) and DFS (HR=1.481, 95% CI: 1.028-2.133, P= 0.035) in patients with malignant cancers of the digestive system. Increased expression of p-STAT3 is significantly related with tumor cell differentiation (Odds ratio (OR) =1.895, 95% CI: 1.364-2.632, P<0.001) and lymph node metastases (OR=2.108, 95% CI: 1.104-4.024, P=0.024). Sensitivity analysis suggested that the pooled HR was stable and omitting a single study did not change the significance of the pooled HR. Funnel plots and Egger’s tests revealed there was no significant publication bias in the meta-analysis.
Conclusion
Phospho-STAT3 might be a prognostic factor of patients with digestive system cancers. More well designed studies with adequate follow-up are needed to gain a thorough understanding of the prognostic role of p-STAT3.
doi:10.1371/journal.pone.0127356
PMCID: PMC4449159  PMID: 26024373
4.  Highly diversified fungi are associated with the achlorophyllous orchid Gastrodia flavilabella 
BMC Genomics  2015;16(1):185.
Background
Mycoheterotrophic orchids are achlorophyllous plants that obtain carbon and nutrients from their mycorrhizal fungi. They often show strong preferential association with certain fungi and may obtain nutrients from surrounding photosynthetic plants through ectomycorrhizal fungi. Gastrodia is a large genus of mycoheterotrophic orchids in Asia, but Gastrodia species’ association with fungi has not been well studied. We asked two questions: (1) whether certain fungi were preferentially associated with G. flavilabella, which is an orchid in Taiwan and (2) whether fungal associations of G. flavilabella were affected by the composition of fungi in the environment.
Results
Using next-generation sequencing, we studied the fungal communities in the tubers of Gastrodia flavilabella and the surrounding soil. We found (1) highly diversified fungi in the G. flavilabella tubers, (2) that Mycena species were the predominant fungi in the tubers but minor in the surrounding soil, and (3) the fungal communities in the G. flavilabella tubers were clearly distinct from those in the surrounding soil. We also found that the fungal composition in soil can change quickly with distance.
Conclusions
G. flavilabella was associated with many more fungi than previously thought. Among the fungi in the tuber of G. flavilabella, Mycena species were predominant, different from the previous finding that adult G. elata depends on Armillaria species for nutritional supply. Moreover, the preferential fungus association of G. flavilabella was not significantly influenced by the composition of fungi in the environment.
Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1422-7) contains supplementary material, which is available to authorized users.
doi:10.1186/s12864-015-1422-7
PMCID: PMC4371811  PMID: 25886817
Orchid; Mycorrhizal fungi; Gastrodia flavilabella; Mycena species; Mycoheterotrophic; Next-generation sequencing
5.  ASPP2 enhances Oxaliplatin (L-OHP)-induced colorectal cancer cell apoptosis in a p53-independent manner by inhibiting cell autophagy 
Inactivation of p53-mediated cell death pathways is a central component of cancer progression. ASPP2 (apoptosis stimulated protein of p53-2) is a p53 binding protein that specially stimulates pro-apoptosis function of p53. Down-regulation of ASPP2 is observed in many human cancers and is associated with poor prognosis and metastasis. In this study, ASPP2 was found to enhance L-OHP-induced apoptosis in HCT116 p53−/− cells in a p53-independent manner. Such apoptosis-promoting effect of ASPP2 was achieved by inhibiting autophagy. Further experiments with ASPP2 RNA interference and autophagy inhibitor (3-methyladenine, 3-MA) confirmed that ASPP2 enhanced HCT116 p53−/− cell apoptosis via inhibiting the autophagy. The association of cell death and autophagy was also found in ASPP2+/− mice, where colon tissue with reduced ASPP2 expression displayed more autophagy and less cell death. Finally, colorectal tumours and their adjacent normal tissues from 20 colorectal cancer patients were used to examine ASPP2 expression, p53 expression and p53 mutation, to understand their relationships with the patients' outcome. Three site mutations were found in p53 transcripts from 16 of 20 patients. ASPP2 mRNA expressions were higher, and autophagy level was lower in the adjacent normal tissues, compared with the tumour tissues, which was independent of both p53 mutation and expression level. Taken together, ASPP2 increased tumour sensitivity to chemotherapy via inhibiting autophagy in a p53-independent manner, which was associated with the tumour formation, suggesting that both p53 inactivation and ASPP2 expression level were involved in the sensitivity of colorectal cancer to chemotherapy.
doi:10.1111/jcmm.12435
PMCID: PMC4369811  PMID: 25534115
ASPP2; colorectal cancer; apoptosis; p53; autophagy
6.  The sero-prevalence of anti-adenovirus 5 neutralizing antibodies is independent of a chronic hepatitis B carrier state in China 
Archives of Virology  2015;160(4):1125-1130.
We investigated the prevalence of neutralizing antibodies (NA) to human Adenovirus (Ad) 5 both in healthy subjects (HS) and Chronic Hepatitis B (CHB) patients in Shanghai. Detection of anti-Ad5 NA (percentage of detection and titers) was similar between HS and CHB patients. A high percentage of subjects harbored no detectable antibodies (32.2 %) while proportion of subjects displaying very high antibody titers was low (4 %). Neither demographic factors (gender, age, health) nor AST/ALT or HBV circulating DNA titers affected detection of Ad5-specific NA. These observations pave the ground for development of Ad5-based immunotherapeutics aiming at treating CHB patients in China.
doi:10.1007/s00705-015-2333-2
PMCID: PMC4369289  PMID: 25616844
Adenovirus 5; Neutralizing antibodies; Chronic HBV infection
7.  Acute pancreatitis associated with herpes zoster: Case report and literature review 
World Journal of Gastroenterology : WJG  2014;20(47):18053-18056.
Varicella-zoster virus (VZV) is a type of herpes virus known to cause varicella, mainly in young children, and herpes zoster in adults. Although generally non-lethal, VZV infection can be associated with serious complications, particularly in adults. Acute pancreatitis caused by VZV infection is a rare event, with reports primarily concerning immunocompromised individuals. Here we report a 44-year-old immunocompetent female who developed acute pancreatitis associated with VZV infection. The patient presented with vomiting and persistent pain in the upper quadrant less than one week after diagnosis and treatment for a herpes zoster-related rash with stabbing pain on the abdomen and dorsal right trunk side. A diagnosis of acute pancreatitis was confirmed based on abdominal pain, elevated levels of urine and serum amylase, and findings of peri-pancreatic exudation and effusions by computed tomography and magnetic resonance cholangiopancreatography. This case highlights that, though rare, acute pancreatitis should be considered in VZV patients who complain of abdominal pain, especially in the epigastric area. Early detection and proper treatment are needed to prevent the condition from deteriorating further and to minimize mortality.
doi:10.3748/wjg.v20.i47.18053
PMCID: PMC4273159  PMID: 25548507
Varicella-zoster virus; Herpes zoster; Acute pancreatitis; Immunocompetent adult
8.  DotU expression is highly induced during in vivo infection and responsible for virulence and Hcp1 secretion in avian pathogenic Escherichia coli 
Type VI secretion systems (T6SSs) contribute to pathogenicity in many pathogenic bacteria. Three distinguishable T6SS loci have been discovered in avian pathogenic Escherichia coli (APEC). The sequence of APEC T6SS2 locus is highly similar to the sequence of the newborn meningitis Escherichia coli (NMEC) RS218 T6SS locus, which might contribute to meningitis pathogenesis. However, little is known about the function of APEC T6SS2. We showed that the APEC T6SS2 component organelle trafficking protein (DotU) could elicit antibodies in infected ducks, suggesting that DotU might be involved in APEC pathogenicity. To investigate DotU in APEC pathogenesis, mutant and complemented strains were constructed and characterized. Inactivation of the APEC dotU gene attenuated virulence in ducks, diminished resistance to normal duck serum, and reduced survival in macrophage cells and ducks. Furthermore, deletion of the dotU gene abolished hemolysin-coregulated protein (Hcp) 1 secretion, leading to decreased interleukin (IL)-6 and IL-8 gene expression in HD-11 chicken macrophages. These functions were restored for the complementation strain. Our results demonstrated that DotU plays key roles in the APEC pathogenesis, Hcp1 secretion, and intracellular host response modulation.
doi:10.3389/fmicb.2014.00588
PMCID: PMC4224132  PMID: 25426107
avian pathogenic Escherichia coli; type VI secretion system; DotU; secretion; virulence
9.  Use of combination therapy to successfully treat breakthrough Trichosporon asahii infection in an acute leukemia patient receiving voriconazole 
Trichosporon species is an important life-threatening opportunistic systemic pathogen, especially in leukemia patients. Voriconazole is proved to be a promising agent in past decade. However, recently we observed a case of breakthrough Trichosporon asahii infection while receiving voriconazole, which calls for an alternative treatment strategy. A combination therapy of liposomal amphotericin B (AmB) plus caspofungin – in which liposomal AmB dose was reduced due to renal toxicity – was administered to successfully treat this patient.
doi:10.1016/j.mmcr.2014.09.003
PMCID: PMC4223824  PMID: 25383317
T. asahii; Liposomal amphotericin B; Caspofungin; Voriconazole
10.  Dose-Dependent Effect of Estrogen Suppresses the Osteo-Adipogenic Transdifferentiation of Osteoblasts via Canonical Wnt Signaling Pathway 
PLoS ONE  2014;9(6):e99137.
Fat infiltration within marrow cavity is one of multitudinous features of estrogen deficiency, which leads to a decline in bone formation functionality. The origin of this fat is unclear, but one possibility is that it is derived from osteoblasts, which transdifferentiate into adipocytes that produce bone marrow fat. We examined the dose-dependent effect of 17β-estradiol on the ability of MC3T3-E1 cells and murine bone marrow-derived mesenchymal stem cell (BMMSC)-derived osteoblasts to undergo osteo-adipogenic transdifferentiation. We found that 17β-estradiol significantly increased alkaline phosphatase activity (P<0.05); calcium deposition; and Alp, Col1a1, Runx2, and Ocn expression levels dose-dependently. By contrast, 17β-estradiol significantly decreased the number and size of lipid droplets, and Fabp4 and PPARγ expression levels during osteo-adipogenic transdifferentiation (P<0.05). Moreover, the expression levels of brown adipocyte markers (Myf5, Elovl3, and Cidea) and undifferentiated adipocyte markers (Dlk1, Gata2, and Wnt10b) were also affected by 17β-estradiol during osteo-adipogenic transdifferentiation. Western blotting and immunostaining further showed that canonical Wnt signaling can be activated by estrogen to exert its inhibitory effect of osteo-adipogenesis. This is the first study to demonstrate the dose-dependent effect of 17β-estradiol on the osteo-adipogenic transdifferentiation of MC3T3-E1 cells and BMMSCs likely via canonical Wnt signaling. In summary, our results indicate that osteo-adipogenic transdifferentiation modulated by canonical Wnt signaling pathway in bone metabolism may be a new explanation for the gradually increased bone marrow fat in estrogen-inefficient condition.
doi:10.1371/journal.pone.0099137
PMCID: PMC4053448  PMID: 24918446
11.  Structure-Function Relationship of SW-AT-1, a Serpin-Type Protease Inhibitor in Silkworm 
PLoS ONE  2014;9(6):e99013.
Although SW-AT-1, a serpin-type trypsin inhibitor from silkworm (Bombyx mori), was identified in previous study, its structure-function relationship has not been studied. In this study, SW-AT-1 was cloned from the body wall of silkworm and expressed in E. coli. rSW-AT-1 inhibited both trypsin and chymotrypsin in a concentration-dependent manner. The association rate constant for rSW-AT-1 and trypsin is 1.31×10−5 M−1s−1, for rSW-AT-1 and chymotrpsin is 2.85×10−6 M−1s−1. Circular dichroism (CD) assay showed 33% α-helices, 16% β-sheets, 17% turns, and 31% random coils in the secondary structure of the protein. Enzymatic and CD analysis indicated that rSW-AT-1 was stable at wide pH range between 4–10, and exhibited the highest activity at weakly acidic or alkaline condition. The predicted three-dimensional structure of SW-AT-1 by PyMOL (v1.4) revealed a deductive reactive centre loop (RCL) near the C-terminus, which was extended from the body of the molecule. In addition to trypsin cleavage site in RCL, matrix-assisted laser desorption ionization time of flight mass spectrometry indicated that the chymotrypsin cleavage site of SW-AT-1 was between F336 and T337 in RCL. Directed mutagenesis indicated that both the N- and C-terminal sides of RCL have effects on the activity, and G327 and E329 played an important role in the proper folding of RCL. The physiological role of SW-AT-1 in the defense responses of silkworm were also discussed.
doi:10.1371/journal.pone.0099013
PMCID: PMC4047069  PMID: 24901510
12.  Comparison of Next-Generation Sequencing and Clone-Based Sequencing in Analysis of Hepatitis B Virus Reverse Transcriptase Quasispecies Heterogeneity 
Journal of Clinical Microbiology  2013;51(12):4087-4094.
We previously reported that, based on clone-based sequencing (CBS), hepatitis B virus (HBV) heterogeneity within the reverse transcriptase (RT) region was a predictor of antiviral efficacy. Here, by comparing ultradeep pyrosequencing (UDPS), i.e., next-generation sequencing (NGS), with CBS in characterizing the genetic heterogeneity of HBV quasispecies within the RT region, we evaluated the performance of UDPS in the analysis of HBV viral populations. HBV genomic DNA was extracted from serum samples from 31 antiviral treatment-naive patients with chronic hepatitis B. The RT region quasispecies were analyzed in parallel using CBS and UDPS. Characterization of quasispecies heterogeneity was conducted using bioinformatics analysis. Quasispecies complexity values were calculated with the formula Sn = −Σi(pilnpi)/lnN. The number of qualified strains obtained by UDPS was much larger than that obtained by CBS (P < 0.001). Pearson analysis showed that there was a positive correlation of quasispecies complexity values at the nucleotide level for the two methods (P < 0.05), while the complexity value derived from UDPS data was higher than that derived from CBS data (P < 0.001). Study of the prevalences of variations within the RT region showed that CBS detected an average of 9.7 ± 1.1 amino acid substitutions/sample and UDPS detected an average of 16.2 ± 1.4 amino acid substitutions/sample. The phylogenetic analysis based on UDPS data showed more genetic entities than did that based on CBS data. Viral heterogeneity determination by the UDPS technique is more sensitive and efficient in terms of low-abundance variation detection and quasispecies simulation than that by the CBS method, although imperfect, and thus sheds light on the future clinical application of NGS in HBV quasispecies studies.
doi:10.1128/JCM.01723-13
PMCID: PMC3838070  PMID: 24088859
13.  Development of an Allele-Specific PCR Assay for Simultaneous Sero-Typing of Avian Pathogenic Escherichia coli Predominant O1, O2, O18 and O78 Strains 
PLoS ONE  2014;9(5):e96904.
Systemic infections by avian pathogenic Escherichia coli (APEC) are economically devastating to poultry industries worldwide. E. coli strains belonging to serotypes O1, O2, O18 and O78 are preferentially associated with avian colibacillosis. The rfb gene cluster controlling O antigen synthesis is usually various among different E. coli serotypes. In present study, the rfb gene clusters of E. coli serotypes O1, O2, O18 and O78 were characterized and compared. Based on the serotype-specific genes in rfb gene cluster, an allele-specific polymerase chain reaction (PCR) assay was developed. This PCR assay was highly specific and reliable for sero-typing of APEC O1, O2, O18 and O78 strains. The sensitivity of the assay was determined as 10 pg DNA or 10 colony forming units (CFUs) bacteria for serotypes O2 and O18 strains, and 500 pg DNA or 1,000 CFUs bacteria for serotypes O1 and O78 strains. Using this PCR system, APEC isolates and the infected tissue samples were categorized successfully. Furthermore, it was able to differentiate the serotypes for the samples with multi-agglutination in the traditional serum agglutination assay. Therefore, the allele-specific PCR is more simple, rapid and accurate assay for APEC diagnosis, epidemiologic study and vaccine development.
doi:10.1371/journal.pone.0096904
PMCID: PMC4013041  PMID: 24805368
14.  Structure of the unique SEFIR domain from human interleukin 17 receptor A reveals a composite ligand-binding site containing a conserved α-helix for Act1 binding and IL-17 signaling 
Crystal structure of the SEFIR domain from human IL-17 receptor A provides new insights into IL-17 signaling.
Interleukin 17 (IL-17) cytokines play a crucial role in mediating inflammatory and autoimmune diseases. A unique intracellular signaling domain termed SEFIR is found within all IL-17 receptors (IL-17Rs) as well as the key adaptor protein Act1. SEFIR-mediated protein–protein interaction is a crucial step in IL-17 cytokine signaling. Here, the 2.3 Å resolution crystal structure of the SEFIR domain of IL-17RA, the most commonly shared receptor for IL-17 cytokine signaling, is reported. The structure includes the complete SEFIR domain and an additional α-helical C-terminal extension, which pack tightly together to form a compact unit. Structural comparison between the SEFIR domains of IL-17RA and IL-17RB reveals substantial differences in protein topology and folding. The uniquely long insertion between strand βC and helix αC in IL-17RA SEFIR is mostly well ordered, displaying a helix (αCC′ins) and a flexible loop (CC′). The DD′ loop in the IL-17RA SEFIR structure is much shorter; it rotates nearly 90° with respect to the counterpart in the IL-17RB SEFIR structure and shifts about 12 Å to accommodate the αCC′ins helix without forming any knots. Helix αC was identified as critical for its interaction with Act1 and IL-17-stimulated gene expression. The data suggest that the heterotypic SEFIR–SEFIR association via helix αC is a conserved and signature mechanism specific for IL-17 signaling. The structure also suggests that the downstream motif of IL-17RA SEFIR together with helix αC could provide a composite ligand-binding surface for recruiting Act1 during IL-17 signaling.
doi:10.1107/S1399004714005227
PMCID: PMC4014126  PMID: 24816115
SEFIR domain; interleukin 17 receptor A; Act1 binding; IL-17 signaling
15.  βig-h3 Promotes Human Osteosarcoma Cells Metastasis by Interacting with Integrin α2β1 and Activating PI3K Signaling Pathway 
PLoS ONE  2014;9(3):e90220.
Osteosarcoma, the most common primary bone tumor in children and young adolescents, is characterized by local invasion and distant metastasis. But the detailed mechanisms of osteosarcoma metastasis are not well known. In the present study, we found that βig-h3 promotes metastatic potential of human osteosarcoma cells in vitro and in vivo. Furthermore, βig-h3 co-localized with integrin α2β1 in osteosarcoma cells. But βig-h3 did not change integrin α2β1 expression in Saos-2 cells. Interaction of βig-h3 with integrin α2β1 mediates metastasis of human osteosarcoma cells. The second FAS1 domain of βig-h3 but not the first FAS1 domain, the third FAS1 domain or the fourth FAS1 domain mediates human osteosarcoma cells metastasis, which is the α2β1 integrin-interacting domain. We further demonstrated that PI3K/AKT signaling pathway is involved in βig-h3-induced human osteosarcoma cells metastasis process. Together, these results reveal βig-h3 enhances the metastasis potentials of human osteosarcoma cells via integrin α2β1-mediated PI3K/AKT signal pathways. The discovery of βig-h3-mediated pathway helps us to understand the mechanism of human osteosarcoma metastasis and provides evidence for the possibility that βig-h3 can be a potential therapeutic target for osteosarcoma treatment.
doi:10.1371/journal.pone.0090220
PMCID: PMC3942417  PMID: 24595049
16.  Crystal structure of interleukin 17 receptor B SEFIR domain 
Interleukin 17 (IL-17) cytokines play a crucial role in a variety of inflammatory and autoimmune diseases. They signal through heterodimeric receptor complexes consisting of members of IL-17 receptor (IL-17R) family. A unique intracellular signaling domain was identified within all IL-17Rs, termed SEFIR [SEF (similar expression to fibroblast growth factor genes) and IL-17R]. SEFIR is also found in nuclear factor κB (NF-κB) activator 1 (Act1), an E3 ubiquitin ligase, and mediates its recruitment to IL-17Rs. Here we report the structure of the first SEFIR domain from IL-17RB at 1.8Å resolution. SEFIR displays a five-stranded parallel β-sheet that is wrapped by six helices. Site-directed mutagenesis on IL-17RB identified helix αC as being critical for its interaction with Act1 and IL-25 (IL-17E) signaling. Using the current SEFIR structure as a template, the key functional residues in Act1 are also mapped as part of helix αC, which is conserved in IL-17RA and RC, suggesting this helix as a common structural signature for heterotypic SEFIR-SERIR association. On the other hand, helix αB′ is important for homo-dimerization of Act1, implicating a dual ligand-binding model for SEFIR domain, with distinct structural motifs participating in either homotypic or heterotypic interactions. Furthermore, although IL-17RB-SEFIR structure resembles closest to the Toll/Interleukin-1 receptor (TIR) domain of TLR10 with low sequence homology, substantial differences were observed at helices αC, αD and DD′ loop. This study provides the first structural view of the IL-17 receptor intracellular signaling, unraveling the mechanism for the specificity of SEFIR versus TIR domain in their respective signaling pathways.
doi:10.4049/jimmunol.1202922
PMCID: PMC3578156  PMID: 23355738
17.  Oxidative Stress Induces Mitochondrial DNA Damage and Cytotoxicity through Independent Mechanisms in Human Cancer Cells 
BioMed Research International  2012;2013:825065.
Intrinsic oxidative stress through increased production of reactive oxygen species (ROS) is associated with carcinogenic transformation, cell toxicity, and DNA damage. Mitochondrial DNA (mtDNA) is a natural surrogate to oxidative DNA damage. MtDNA damage results in the loss of its supercoiled structure and is readily detectable using a novel, supercoiling-sensitive real-time PCR method. Our studies have demonstrated that mtDNA damage, as measured by DNA strand breaks and copy number depletion, is very sensitive to exogenous H2O2 but independent of endogenous ROS production in both prostate cancer and normal cells. In contrast, aggressive prostate cancer cells exhibit a more than 10-fold sensitivity to H2O2-induced cell toxicity than normal cells, and a cascade of secondary ROS production is a critical determinant to the differential response. We propose a new paradigm to account for different mechanisms governing cellular oxidative stress, cell toxicity, and DNA damage with important ramifications in devising new techniques and strategies in prostate cancer prevention and treatment.
doi:10.1155/2013/825065
PMCID: PMC3591153  PMID: 23509785
18.  A CC′ Loop Decoy Peptide Blocks the Interaction Between Act1 and IL-17RA to Attenuate IL-17- and IL-25-Induced Inflammation 
Science Signaling  2011;4(197):ra72.
Interleukin-17 (IL-17) and IL-25 signaling induce the expression of genes that encode inflammatory factors and they are implicated in the pathology of various inflammatory diseases. Nuclear factor κB (NF-κB) activator 1 (Act1) is an adaptor protein and E3 ubiquitin ligase that is critical for IL-17 and IL-25 signaling, and it is recruited to their receptors through heterotypic interactions between their SEFIR [SEF (similar expression to fibroblast growth factor genes)/IL-17R] domains. Modeling of SEFIR domains has shown their structural similarity with the Toll-IL-1 receptor (TIR) domains of Toll-like receptors (TLRs) and the IL-1R. Whereas the BB′ loop of TIR is required for TIR-TIR interactions, we found that deletion of the BB′ loop from Act1 or IL-17RA (a common subunit of IL-17R and IL-25R) did not affect Act1–IL-17RA interactions. Instead, deletion of the CC′ loop from Act1 or IL-17RA abolished the interaction between Act1 and IL-17RA, suggesting that SEFIR and TIR domains interact in different manners. Surface plasmon resonance measurements showed that a peptide corresponding to the CC′ loop bound directly to IL-17RA. A cell-permeable decoy peptide based on the CC′ loop sequence inhibited IL-17- and IL-25-mediated signaling, and it inhibited IL-17- and IL-25-induced responses in vitro and pulmonary inflammation in vivo. Together, these findings provide the molecular basis for the specificity of SEFIR versus TIR domain interactions and consequent signaling. Moreover, we suggest that the CC′ loop motif of SEFIR domains is a promising target for therapeutic strategies against IL-17- and IL-25-asssociated inflammatory diseases.
doi:10.1126/scisignal.2001843
PMCID: PMC3282585  PMID: 22045852
19.  A shear-based assay for assessing plasma ADAMTS13 activity and inhibitor in patients with thrombotic thrombocytopenic purpura 
Transfusion  2011;51(7):1580-1591.
Background
Severe deficiency of plasma ADAMTS13 activity is a frequent finding in patients with hereditary and acquired thrombotic thrombocytopenic purpura (TTP). To date, plasma ADAMTS13 activity is determined by cleavage of either pre-denatured von Willebrand factor (VWF) or small peptides derived from the VWF-A2 domain. The physiological relevance of the assay results is uncertain.
Methods
We sought to develop a novel shear-based assay to assess plasma ADAMTS13 activity and inhibitor. We also compared this assay with a fluorogenic peptide assay.
Results
We found that an incubation of purified plasma VWF with 0.5-1.0 μl of citrated plasma under constant vortexing at 2,500 rpm for 60 minutes in the presence of 5 mM CaCl2, 1.7 μM ZnCl2 and low concentration of NaCl resulted in the maximal cleavage of VWF. The cleavage product could be separated by a 2.5% agarose gel and detected by Western blotting. The assay revealed that plasma and recombinant ADAMTS13 are highly sensitive to inhibition by zinc and chloride ions. Under the optimal conditions, the shear-based assay appeared to be more sensitive than the guanidine-denaturization assay for determining plasma ADAMTS13 activity.
Conclusions
Our fluid shear-based assay may be useful for investigating basic biological function and regulation of ADAMTS13 metalloprotease. It may also be applicable for assessing plasma ADAMTS13 activity and inhibitors in TTP patients.
doi:10.1111/j.1537-2995.2010.03020.x
PMCID: PMC3168518  PMID: 21251003
20.  Introduction of multiphosphonate ligand to peptide nucleic acid for metal ion conjugation 
Artificial DNA, PNA & XNA  2012;3(2):73-79.
Peptide nucleic acid (PNA) is one of the most widely used synthetic DNA analogs. Conjugation of functional molecules to PNA is very effective to further widen its potential applications. For this purpose, here we report the synthesis of several ligand monomers and introduced them to PNA. These ligand-modified PNAs attract cerium ion and are useful for site-selective DNA hydrolysis. It should be noted that these ligands on PNA are also effective even under the conditions of invasion complex.
doi:10.4161/adna.20727
PMCID: PMC3429533  PMID: 22772037
cerium; DNA; hydrolysis; ligand; metal ion; peptide nucleic acid
21.  Association of SLC38A4 and system A with abnormal fetal birth weight 
In this study, we aimed to explore the correlation between solute carrier family 38 member 4 (SLC38A4) and system A activity in human placentas from pregnancies with abnormal fetal birth weight. We collected placentas from consenting women immediately after their full-term babies were born, with normal, low birth weight or macrosomia, and used real-time PCR and Western blot analysis to detect the levels of SLC38A4 mRNA and protein [also known as sodium-coupled neutral amino acid transport protein 4 (SNAT4)]. Isotope incorporation assay was applied to measure system A activity in the placentas. Compared to the normal birth weight (NBW) group, placentas from the fetal macrosomia (FM) group had significantly increased levels of SLC38A4 mRNA and SNAT4 (both were increased by almost 2-fold; P<0.05), while no significant changes were detected in the placentas from the low birth weight (LBW) group. In addition, system A activity in the placentas from the FM and LBW groups was significantly different from that in the NBW group (1.2±0.20, 0.6±0.14 vs. 1.0±0.18, P<0.05). The data suggest that SNAT4 and system A have a strong association with abnormal fetal birth weight and that they may play a crucial role in fetal growth and development.
doi:10.3892/etm.2011.392
PMCID: PMC3438638  PMID: 22969887
birth weight; solute carrier family 38 member 4; sodium-coupled neutral amino acid transport protein 4; system A
22.  Alterations of hemostatic parameters in the early development of allogeneic hematopoietic stem cell transplantation-related complications 
Annals of Hematology  2011;90(10):1201-1208.
Thrombotic events are common and potentially fatal complications in patients receiving hematopoietic stem cell transplantation (HSCT). Early diagnosis is crucial but remains controversial. In this study, we investigated the early alterations of hemostatic parameters in allogeneic HSCT recipients and determined their potential diagnostic values in transplantation-related thrombotic complications and other post-HSCT events. Results from 107 patients with allogeneic HSCT showed higher levels of plasma plasminogen activator inhibitor-1 (PAI-1), fibrinogen, and tissue-plasminogen activator (t-PA) and a lower level of plasma protein C after transplantation. No change was found for prothrombin time, antithrombin III, d-dimer, and activated partial thromboplastin time following HSCT. Transplantation-related complications (TRCs) in HSCT patients were defined as thrombotic (n = 8), acute graft-versus-host disease (aGVHD, n = 45), and infectious (n = 38). All patients with TRCs, especially the patients with thrombotic complications, presented significant increases in the mean and maximum levels of PAI-1 during the observation period. Similarly, a high maximum t-PA level was found in the thrombotic group. In contrast, apparent lower levels of mean and minimum protein C were observed in the TRC patients, especially in the aGVHD group. Therefore, the hemostatic imbalance in the early phase of HSCT, reflecting prothrombotic state and endothelial injury due to the conditioning therapy or TRCs, might be useful in the differential diagnosis of the thrombotic complication from other TRCs.
doi:10.1007/s00277-011-1273-5
PMCID: PMC3168446  PMID: 21674145
Thrombotic complication; Transplantation-related complications (TRCs); Plasminogen activator inhibitor-1 (PAI-1); Protein C (PC); Hematopoietic stem cell transplantation (HSCT)
23.  Clinical and molecular characterization of Wilson's disease in China: identification of 14 novel mutations 
BMC Medical Genetics  2011;12:6.
Background
Wilson's disease (WND) is a rare autosomal recessive disorder. Here we have evaluated 62 WND cases (58 probands) from the Chinese Han population to expand our knowledge of ATP7B mutations and to more completely characterize WND in China.
Methods
The coding and promoter regions of the ATP7B gene were analyzed by direct sequencing in 62 Chinese patients (58 probands) with WND (male, n = 37; female, n = 25; age range, 2 ~ 61 years old).
Results
Neurologic manifestations were associated with older age at diagnosis (p < 0.0001) and longer diagnostic delay (p < 0.0001). Age at diagnosis was also correlated with urinary copper concentration (r = 0.58, p < 0.001). Forty different mutations, including 14 novel mutations, were identified in these patients. Common mutations included p.Arg778Leu (31.9%) and p.Pro992Leu (11.2%). Homozygous p.Arg778Leu and nonsense mutation/frameshift mutations were more often associated with primary hepatic manifestations (p = 0.0286 and p = 0.0383, respectively) and higher alanine transaminase levels at diagnosis (p = 0.0361 and p = 0.0047, respectively). Nonsense mutation/frameshift mutations were also associated with lower serum ceruloplasmin (p = 0.0065).
Conclusions
We identified 14 novel mutations and found that the spectrum of mutations of ATP7B in China is quite distinct from that of Western countries. The mutation type plays a role in predicting clinical manifestations. Genetic testing is a valuable tool to detect WND in young children, especially in patients younger than 8 years old. Four exons (8, 12, 13, and 16) and two mutations (p.Arg778Leu, p.Pro992Leu) should be considered high priority for cost-effective testing in China.
doi:10.1186/1471-2350-12-6
PMCID: PMC3025937  PMID: 21219664
24.  Theoretical Investigations into Self-Organized Ordered Metallic Semi-Clusters Arrays on Metallic Substrate 
Nanoscale Research Letters  2010;5(6):1020-1026.
Using the energy minimization calculations based on an interfacial potential and a first-principles total energy method, respectively, we show that (2 × 2)/(3 × 3) Pb/Cu(111) system is a stable structure among all the [(n − 1) × (n − 1)]/(n × n) Pb/Cu(111) (n = 2, 3,…, 12) structures. The electronic structure calculations indicate that self-organized ordered Pb semi-clusters arrays are formed on the first Pb monolayer of (2 × 2)/(3 × 3) Pb/Cu(111), which is due to a strain-release effect induced by the inherent misfits. The Pb semi-clusters structure can generate selective adsorption of atoms of semiconductor materials (e.g., Ge) around the semi-clusters, therefore, can be used as a template for the growth of nanoscale structures with a very short periodic length (7.67 Å).
doi:10.1007/s11671-010-9595-0
PMCID: PMC2893967  PMID: 20672088
Self-organized; Template; Interface potential; Molecular dynamics; First-principles calculation
25.  Theoretical Investigations into Self-Organized Ordered Metallic Semi-Clusters Arrays on Metallic Substrate 
Nanoscale Research Letters  2010;5(6):1020-1026.
Using the energy minimization calculations based on an interfacial potential and a first-principles total energy method, respectively, we show that (2 × 2)/(3 × 3) Pb/Cu(111) system is a stable structure among all the [(n − 1) × (n − 1)]/(n × n) Pb/Cu(111) (n = 2, 3,…, 12) structures. The electronic structure calculations indicate that self-organized ordered Pb semi-clusters arrays are formed on the first Pb monolayer of (2 × 2)/(3 × 3) Pb/Cu(111), which is due to a strain-release effect induced by the inherent misfits. The Pb semi-clusters structure can generate selective adsorption of atoms of semiconductor materials (e.g., Ge) around the semi-clusters, therefore, can be used as a template for the growth of nanoscale structures with a very short periodic length (7.67 Å).
doi:10.1007/s11671-010-9595-0
PMCID: PMC2893967  PMID: 20672088
Self-organized; Template; Interface potential; Molecular dynamics; First-principles calculation

Results 1-25 (26)