PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Helix control in polymers 
Artificial DNA, PNA & XNA  2012;3(2):31-44.
The helix is a critical conformation exhibited by biological macromolecules and plays a key role in fundamental biological processes. Biological helical polymers exist in a single helical sense arising from the chiral effect of their primary units—for example, DNA and proteins adopt predominantly a right-handed helix conformation in response to the asymmetric conformational propensity of D-sugars and L-amino acids, respectively. In using these homochiral systems, nature blocks our observations of some fascinating aspects of the cooperativity in helical systems, although when useful for a specific purpose, “wrong” enantiomers may be incorporated in specific places. In synthetic helical systems, on the contrary, incorporation of non-racemic chirality is an additional burden, and the findings discussed in this review show that this burden may be considerably alleviated by taking advantage of the amplification of chirality, in which small chiral influences lead to large consequences. Peptide nucleic acid (PNA), which is a non-chiral synthetic DNA mimic, shows a cooperative response to a small chiral effect induced by a chiral amino acid, which is limited, however, due to the highly flexible nature of this oligomeric chimera. The lack of internal stereochemical bias is an important factor which makes PNA an ideal system to understand some cooperative features that are not directly accessible from DNA.
doi:10.4161/adna.20572
PMCID: PMC3429529  PMID: 22772039
helix control; chiral amplification; cooperativity; helical polymers; PNA

Results 1-1 (1)