Search tips
Search criteria

Results 1-16 (16)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Molecular and serological rapid tests as markers of Trypanosoma cruzi infection in dogs in Costa Rica 
Tropical Parasitology  2014;4(2):111-114.
Chagas disease is a zoonotic disease caused by Trypanosoma cruzi and dogs are one of the main domestic reservoirs.
Materials and Methods:
One molecular (OligoC-TesT, Coris Bioconcept) and one serological (T. cruzi-Detect, Inbios) rapid tests were evaluated as infection markers for T. cruzi in 102 dogs living in eight villages endemic for Chagas in Costa Rica.
T. cruzi-Detect performed well as screening tool with 23.3% positive samples. The large number of invalid results (66.7%) observed in samples tested with OligoC-TesT precluded assessing the use of this new method as epidemiological tool to detect T. cruzi infection in dogs.
PMCID: PMC4166795  PMID: 25250232
Asymptomatic infections; Chagas; Costa Rica; diagnostic tools; T. cruzi-Detect; OligoC-TesT; rapid test; Trypanosoma cruzi
2.  Controlling the function of DNA nanostructures with specific trigger sequences 
We report a hybridization-based switching mechanism with single-base specificity that can be readily integrated with functional DNA nanostructures. As an exemplar, we have developed a switchable DNAzyme (SDZ) that only becomes activated in the presence of a perfectly matched trigger sequence and operates effectively at room temperature.
PMCID: PMC3552611  PMID: 23192255
3.  The Trypanosoma cruzi Satellite DNA OligoC-TesT and Trypanosoma cruzi Kinetoplast DNA OligoC-TesT for Diagnosis of Chagas Disease: A Multi-cohort Comparative Evaluation Study 
The Trypanosoma cruzi satellite DNA (satDNA) OligoC-TesT is a standardised PCR format for diagnosis of Chagas disease. The sensitivity of the test is lower for discrete typing unit (DTU) TcI than for TcII-VI and the test has not been evaluated in chronic Chagas disease patients.
Methodology/Principal Findings
We developed a new prototype of the OligoC-TesT based on kinetoplast DNA (kDNA) detection. We evaluated the satDNA and kDNA OligoC-TesTs in a multi-cohort study with 187 chronic Chagas patients and 88 healthy endemic controls recruited in Argentina, Chile and Spain and 26 diseased non-endemic controls from D.R. Congo and Sudan. All specimens were tested in duplicate. The overall specificity in the controls was 99.1% (95% CI 95.2%–99.8%) for the satDNA OligoC-TesT and 97.4% (95% CI 92.6%–99.1%) for the kDNA OligoC-TesT. The overall sensitivity in the patients was 67.9% (95% CI 60.9%–74.2%) for the satDNA OligoC-TesT and 79.1% (95% CI 72.8%–84.4%) for the kDNA OligoC-Test.
Specificities of the two T. cruzi OligoC-TesT prototypes are high on non-endemic and endemic controls. Sensitivities are moderate but significantly (p = 0.0004) higher for the kDNA OligoC-TesT compared to the satDNA OligoC-TesT.
Author Summary
Accurate diagnosis of Chagas disease is challenging due to the latent character of the infection and the low parasite load in the blood. Molecular tests such as the polymerase chain reaction (PCR) detect the parasite's DNA and are generally very sensitive and specific. In this study we evaluated two prototypes of a standardized PCR diagnostic kit: the satellite DNA (satDNA) OligoC-TesT and the kinetoplast (kDNA) OligoC-TesT. Sensitivities and specificities of both tests were estimated in a multi-cohort phase II evaluation study with 187 chronic Chagas patients and 88 healthy endemic controls from Argentina, Chile and Spain, and 26 non-endemic controls from D.R. Congo and Sudan with potentially cross-reacting diseases. Specificities in the control persons were high (>97%) and the sensitivity of the kDNA OligoC-TesT (79.1%) was significantly higher than of the satDNA OligoC-Test (67.9%). In a next phase, the kDNA OligoC-TesT should be evaluated in specific niches where standard serological tools have their limitations, e.g. follow-up after treatment and diagnosing newborns and HIV co-infected patients.
PMCID: PMC3879245  PMID: 24392177
4.  Diagnostic Accuracy of Loopamp Trypanosoma brucei Detection Kit for Diagnosis of Human African Trypanosomiasis in Clinical Samples 
Molecular methods have great potential for sensitive parasite detection in the diagnosis of human African trypanosomiasis (HAT), but the requirements in terms of laboratory infrastructure limit their use to reference centres. A recently developed assay detects the Trypanozoon repetitive insertion mobile element (RIME) DNA under isothermal amplification conditions and has been transformed into a ready-to-use kit format, the Loopamp Trypanosoma brucei. In this study, we have evaluated the diagnostic performance of the Loopamp Trypanosoma brucei assay (hereafter called LAMP) in confirmed T.b. gambiense HAT patients, HAT suspects and healthy endemic controls from the Democratic Republic of the Congo (DRC).
Methodology/Principal findings
142 T.b. gambiense HAT patients, 111 healthy endemic controls and 97 HAT suspects with unconfirmed status were included in this retrospective evaluation. Reference standard tests were parasite detection in blood, lymph or cerebrospinal fluid. Archived DNA from blood of all study participants was analysed in duplicate with LAMP. Sensitivity of LAMP in parasitologically confirmed cases was 87.3% (95% CI 80.9–91.8%) in the first run and 93.0% (95% CI 87.5–96.1%) in the second run. Specificity in healthy controls was 92.8% (95% CI 86.4–96.3%) in the first run and 96.4% (95% CI 91.1–98.6%) in the second run. Reproducibility was excellent with a kappa value of 0.81.
In this laboratory-based study, the Loopamp Trypanosoma brucei Detection Kit showed good diagnostic accuracy and excellent reproducibility. Further studies are needed to assess the feasibility of its routine use for diagnosis of HAT under field conditions.
Author Summary
Diagnosis and effective treatment are cornerstones in the control of human African trypanosomiasis (HAT). Molecular tools such as the polymerase chain reaction (PCR) detect the parasite's DNA and are generally very sensitive and specific. However, PCR is not applicable in field settings because it requires a laboratory infrastructure and sophisticated equipment. A recently developed loop-mediated isothermal amplification (LAMP) has emerged as a simpler alternative to conventional molecular methods for the diagnosis of HAT. The test has been transformed into a diagnostic kit for qualitative detection of the parasite's DNA in clinical specimens, the Loopamp Trypanosoma brucei Detection Kit. In this study, we evaluated this kit in laboratory conditions on DNA extracted from blood samples of 142 patients, 97 suspects and 111 healthy endemic controls in the Democratic Republic of the Congo. The test showed good diagnostic accuracy and excellent reproducibility. Given the practical advantages of LAMP over conventional nucleic acid methods these are promising results. Further studies are needed to assess the test's accuracy and feasibility in field conditions.
PMCID: PMC3798548  PMID: 24147176
5.  Trypanosoma lewisi or T. lewisi-like Infection in a 37-Day-Old Indian Infant 
Trypanosomes were observed in the peripheral blood smear of a 37-day-old Indian infant admitted off feeds, with fever and convulsions. Trypanosoma (Herpetosoma) lewisi was identified in the blood. The species identification was confirmed by morphometry, polymerase chain reaction, and sequencing. Human infection with this organism is rare. Only seven cases of this infection have been reported previously in humans. The cases reported are reviewed to develop a composite picture of this disease.
PMCID: PMC3144816  PMID: 21813838
6.  Efficacy Study of Novel Diamidine Compounds in a Trypanosoma evansi Goat Model 
PLoS ONE  2011;6(6):e20836.
Three diamidines (DB 75, DB 867 and DB 1192) were selected and their ability to cure T. evansi experimentally infected goats was investigated. A toxicity assessment and pharmacokinetic analysis of these compounds were additionally carried out. Goats demonstrated no signs of acute toxicity, when treated with four doses of 1 mg/kg/day (total dose 4 mg/kg). Complete curative efficacy of experimentally infected goats was seen in the positive control group treated with diminazene at 5 mg/kg and in the DB 75 and DB 867 groups treated at 2.5 mg/kg. Drug treatment was administered once every second day for a total of seven days. Complete cure was also seen in the group of goats treated with DB 75 at 1.25 mg/kg. DB 1192 was incapable of curing goats at either four-times 2.5 mg/kg or 1.25 mg/kg. Pharmacokinetic analysis clearly demonstrated that the treatment failures of DB 1192 were due to sub-therapeutic compound levels in goat plasma, whilst compound levels for DB 75 and DB 867 remained well within the therapeutic window. In conclusion, two diamidine compounds (DB 75 and DB 867) presented comparable efficacy at lower doses than the standard drug diminazene and could be considered as potential clinical candidates against T. evansi infection.
PMCID: PMC3117839  PMID: 21698106
7.  Sensitive detection of nucleic acids by PNA hybridization directed co-localization of fluorescent beads 
Artificial DNA, PNA & XNA  2011;2(2):60-66.
We have designed a pair of biotinylated peptide nucleic acid (PNA) probes targeting two sequences in 18S rRNA (from the parasite Trypanosoma brucei) at a distance of 191 nt (corresponding to maximum distance of ca. 60 nm) from each other. The PNA probes were individually bound to (strept)avidin-coated fluorescent beads, differing in size and color [green beads (1 µm) and red beads (5.9 µm)], thereby allowing distinct detection of each PNA probe by conventional fluorescence microscopy. These two PNA beads showed easily detectable co-localization when simultaneously hybridizing to a target nucleic acid. The assay detected the parasite 18S rRNA down to 1.6 fmol while there was no such co-localization visible with human 18S rRNA not containing the PNA targets. Furthermore, the assay showed positive detection with 1.6 ng of total RNA (corresponding to RNA from ca. 300 parasites). Upon further optimization this method may provide a new tool for a diagnosis of Human African Trypanosomiasis (HAT) and it may more generally have applications within diagnostics for (neglected) infectious diseases.
PMCID: PMC3166491  PMID: 21912728
diagnostics; fluorescence microscopy; fluorescent bead; PNA; ribosomal RNA; Trypanosome
8.  Comparison of Leishmania OligoC-TesT PCR with Conventional and Real-Time PCR for Diagnosis of Canine Leishmania Infection ▿  
Journal of Clinical Microbiology  2010;48(9):3325-3330.
There is a need for standardization and simplification of the existing methods for molecular detection of Leishmania infantum in the canine reservoir host. The commercially available OligoC-TesT kit incorporates standardized PCR reagents with rapid oligochromatographic dipstick detection of PCR products and is highly sensitive for use in humans but not yet independently validated for use in dogs. Here we compare the sensitivity of OligoC-TesT with those of nested kinetoplast DNA (kDNA) PCR, nested internal transcribed spacer 1 (ITS-1) PCR, and a PCR-hybridization protocol, using longitudinal naturally infected canine bone marrow samples whose parasite burdens were measured by real-time quantitative PCR (qPCR). The sensitivity of OligoC-TesT for infected dogs was 70% (95% confidence interval [CI], 63 to 78%), similar to that of kDNA PCR (72%; 95% CI, 65 to 80%; P = 0.69) but significantly greater than those of PCR-hybridization (61%; 95% CI, 53 to 69%; P = 0.007) and ITS-1 nested PCR (54%; 95% CI, 45 to 62%; P < 0.001); real-time qPCR had the highest sensitivity (91%; 95% CI, 85 to 95%; P < 0.001). OligoC-TesT sensitivity was greater for polysymptomatic and oligosymptomatic dogs than for asymptomatic dogs (93%, 74%, and 61%, respectively; P = 0.005), a trend also observed for the other qualitative PCR methods tested (P ≤ 0.05). Test positivity increased with increasing parasite burdens, as measured by real-time qPCR: OligoC-TesT and kDNA PCR detected 100% and 99% of positive samples when parasite burdens exceeded 74 and 49 parasites/ml, respectively. OligoC-TesT has high sensitivity for detection of canine Leishmania infections; its ease of operation and ease of interpretation are further advantages for veterinary diagnostic laboratories and for large-scale survey work in developing countries.
PMCID: PMC2937666  PMID: 20631112
9.  Diagnostic Accuracy of PCR in gambiense Sleeping Sickness Diagnosis, Staging and Post-Treatment Follow-Up: A 2-year Longitudinal Study 
The polymerase chain reaction (PCR) has been proposed for diagnosis, staging and post-treatment follow-up of sleeping sickness but no large-scale clinical evaluations of its diagnostic accuracy have taken place yet.
Methodology/Principal Findings
An 18S ribosomal RNA gene targeting PCR was performed on blood and cerebrospinal fluid (CSF) of 360 T. brucei gambiense sleeping sickness patients and on blood of 129 endemic controls from the Democratic Republic of Congo. Sensitivity and specificity (with 95% confidence intervals) of PCR for diagnosis, disease staging and treatment failure over 2 years follow-up post-treatment were determined. Reference standard tests were trypanosome detection for diagnosis and trypanosome detection and/or increased white blood cell concentration in CSF for staging and detection of treatment failure. PCR on blood showed a sensitivity of 88.4% (84.4–92.5%) and a specificity of 99.2% (97.7–100%) for diagnosis, while for disease staging the sensitivity and specificity of PCR on cerebrospinal fluid were 88.4% (84.8–91.9%) and 82.9% (71.2–94.6%), respectively. During follow-up after treatment, PCR on blood had low sensitivity to detect treatment failure. In cerebrospinal fluid, PCR positivity vanished slowly and was observed until the end of the 2 year follow-up in around 20% of successfully treated patients.
For T.b. gambiense sleeping sickness diagnosis and staging, PCR performed better than, or similar to, the current parasite detection techniques but it cannot be used for post-treatment follow-up. Continued PCR positivity in one out of five cured patients points to persistence of living or dead parasites or their DNA after successful treatment and may necessitate the revision of some paradigms about the pathophysiology of sleeping sickness.
Author Summary
Post-treatment follow-up is crucial for sleeping sickness patient management and still relies on microscopic examination of the cerebrospinal fluid (CSF). Detection of the parasites DNA with the polymerase chain reaction (PCR) is proposed as a promising and possibly non-invasive alternative for monitoring treatment outcome, but has never been evaluated. We performed PCR on blood and CSF of 360 Trypanosoma brucei gambiense sleeping sickness patients, before treatment and during 2 years after treatment, and on blood of 129 controls. We found that performance of PCR to diagnose sleeping sickness and detect brain involvement was better or similar to current diagnostic techniques. However, we observed that PCR was unreliable for monitoring treatment outcome. Continued PCR positivity in cured patients points to persistence of parasites, or their DNA, after successful treatment, challenging the dogma that in sleeping sickness cure equals parasite elimination. In conclusion, we do not recommend PCR for treatment outcome assessment in sleeping sickness.
PMCID: PMC3042993  PMID: 21364966
10.  International Study to Evaluate PCR Methods for Detection of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients 
A century after its discovery, Chagas disease still represents a major neglected tropical threat. Accurate diagnostics tools as well as surrogate markers of parasitological response to treatment are research priorities in the field. The purpose of this study was to evaluate the performance of PCR methods in detection of Trypanosoma cruzi DNA by an external quality evaluation.
An international collaborative study was launched by expert PCR laboratories from 16 countries. Currently used strategies were challenged against serial dilutions of purified DNA from stocks representing T. cruzi discrete typing units (DTU) I, IV and VI (set A), human blood spiked with parasite cells (set B) and Guanidine Hidrochloride-EDTA blood samples from 32 seropositive and 10 seronegative patients from Southern Cone countries (set C). Forty eight PCR tests were reported for set A and 44 for sets B and C; 28 targeted minicircle DNA (kDNA), 13 satellite DNA (Sat-DNA) and the remainder low copy number sequences. In set A, commercial master mixes and Sat-DNA Real Time PCR showed better specificity, but kDNA-PCR was more sensitive to detect DTU I DNA. In set B, commercial DNA extraction kits presented better specificity than solvent extraction protocols. Sat-DNA PCR tests had higher specificity, with sensitivities of 0.05–0.5 parasites/mL whereas specific kDNA tests detected 5.10−3 par/mL. Sixteen specific and coherent methods had a Good Performance in both sets A and B (10 fg/µl of DNA from all stocks, 5 par/mL spiked blood). The median values of sensitivities, specificities and accuracies obtained in testing the Set C samples with the 16 tests determined to be good performing by analyzing Sets A and B samples varied considerably. Out of them, four methods depicted the best performing parameters in all three sets of samples, detecting at least 10 fg/µl for each DNA stock, 0.5 par/mL and a sensitivity between 83.3–94.4%, specificity of 85–95%, accuracy of 86.8–89.5% and kappa index of 0.7–0.8 compared to consensus PCR reports of the 16 good performing tests and 63–69%, 100%, 71.4–76.2% and 0.4–0.5, respectively compared to serodiagnosis. Method LbD2 used solvent extraction followed by Sybr-Green based Real time PCR targeted to Sat-DNA; method LbD3 used solvent DNA extraction followed by conventional PCR targeted to Sat-DNA. The third method (LbF1) used glass fiber column based DNA extraction followed by TaqMan Real Time PCR targeted to Sat-DNA (cruzi 1/cruzi 2 and cruzi 3 TaqMan probe) and the fourth method (LbQ) used solvent DNA extraction followed by conventional hot-start PCR targeted to kDNA (primer pairs 121/122). These four methods were further evaluated at the coordinating laboratory in a subset of human blood samples, confirming the performance obtained by the participating laboratories.
This study represents a first crucial step towards international validation of PCR procedures for detection of T. cruzi in human blood samples.
Author Summary
A century after its discovery, Chagas disease, caused by the parasite Trypanosoma cruzi, still represents a major neglected tropical threat. Accurate diagnostics tools as well as surrogate markers of parasitological response to treatment are research priorities in the field. The polymerase chain reaction (PCR) has been proposed as a sensitive laboratory tool for detection of T. cruzi infection and monitoring of parasitological treatment outcome. However, high variation in accuracy and lack of international quality controls has precluded reliable applications in the clinical practice and comparisons of data among cohorts and geographical regions. In an effort towards harmonization of PCR strategies, 26 expert laboratories from 16 countries evaluated their current PCR procedures against sets of control samples, composed by serial dilutions of T.cruzi DNA from culture stocks belonging to different lineages, human blood spiked with parasite cells and blood samples from Chagas disease patients. A high variability in sensitivities and specificities was found among the 48 reported PCR tests. Out of them, four tests with best performance were selected and further evaluated. This study represents a crucial first step towards device of a standardized operative procedure for T. cruzi PCR.
PMCID: PMC3019106  PMID: 21264349
11.  Diagnostic Accuracy of the Leishmania OligoC-TesT and NASBA-Oligochromatography for Diagnosis of Leishmaniasis in Sudan 
The Leishmania OligoC-TesT and NASBA-Oligochromatography (OC) were recently developed for simplified and standardised molecular detection of Leishmania parasites in clinical specimens. We here present the phase II evaluation of both tests for diagnosis of visceral leishmaniasis (VL), cutaneous leishmaniasis (CL) and post kala-azar dermal leishmaniasis (PKDL) in Sudan.
The diagnostic accuracy of the tests was evaluated on 90 confirmed and 90 suspected VL cases, 7 confirmed and 8 suspected CL cases, 2 confirmed PKDL cases and 50 healthy endemic controls from Gedarif state and Khartoum state in Sudan.
Principal Findings
The OligoC-TesT as well as the NASBA-OC showed a sensitivity of 96.8% (95% CI: 83.8%–99.4%) on lymph node aspirates and of 96.2% (95% CI: 89.4%–98.7%) on blood from the confirmed VL cases. The sensitivity on bone marrow was 96.9% (95% CI: 89.3%–99.1%) and 95.3% (95% CI: 87.1%–98.4%) for the OligoC-TesT and NASBA-OC, respectively. All confirmed CL and PKDL cases were positive with both tests. On the suspected VL cases, we observed a positive OligoC-TesT and NASBA-OC result in 37.1% (95% CI: 23.2%–53.7%) and 34.3% (95% CI: 20.8%–50.9%) on lymph, in 72.7% (95% CI: 55.8%–84.9%) and 63.6% (95% CI: 46.6%–77.8%) on bone marrow and in 76.9% (95% CI: 49.7%–91.8%) and 69.2% (95% CI: 42.4%–87.3%) on blood. Seven out of 8 CL suspected cases were positive with both tests. The specificity on the healthy endemic controls was 90% (95% CI: 78.6%–95.7%) for the OligoC-TesT and 100% (95% CI: 92.9%–100.0%) for the NASBA-OC test.
Both tests showed high sensitivity on lymph, blood and tissue scrapings for diagnosis of VL, CL and PKDL in Sudan, but the specificity for clinical VL was significantly higher with NASBA-OC.
Author Summary
The leishmaniases are a group of vector-borne diseases caused by protozoan parasites of the genus Leishmania. The parasites are transmitted by phlebotomine sand flies and can cause, depending on the infecting species, three clinical manifestations of leishmaniasis: visceral leishmaniasis (VL), post kala-azar dermal leishmaniasis (PKDL) and cutaneous leishmaniasis (CL) including the mucocutaneous form. VL, PKDL as well as CL are endemic in several parts of Sudan, and VL especially represents a major health problem in this country. Molecular tests such as the polymerase chain reaction (PCR) or nucleic acid sequence based assay (NASBA) are powerful techniques for accurate detection of the parasite in clinical specimens, but broad use is hampered by their complexity and lack of standardisation. Recently, the Leishmania OligoC-TesT and NASBA-Oligochromatography were developed as simplified and standardised PCR and NASBA formats. In this study, both tests were phase II evaluated for diagnosis of VL, PKDL and CL in Sudan.
PMCID: PMC2914782  PMID: 20689822
12.  Phase II Evaluation of Sensitivity and Specificity of PCR and NASBA Followed by Oligochromatography for Diagnosis of Human African Trypanosomiasis in Clinical Samples from D.R. Congo and Uganda 
The polymerase chain reaction (PCR) and nucleic acid sequence-based amplification (NASBA) have been recently modified by coupling to oligochromatography (OC) for easy and fast visualisation of products. In this study we evaluate the sensitivity and specificity of the PCR-OC and NASBA-OC for diagnosis of Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense human African trypanosomiasis (HAT).
Methodology and Results
Both tests were evaluated in a case-control design on 143 HAT patients and 187 endemic controls from the Democratic Republic of Congo (DRC) and Uganda. The overall sensitivity of PCR-OC was 81.8% and the specificity was 96.8%. The PCR-OC showed a sensitivity and specificity of 82.4% and 99.2% on the specimens from DRC and 81.3% and 92.3% on those from Uganda. NASBA-OC yielded an overall sensitivity of 90.2%, and a specificity of 98.9%. The sensitivity and specificity of NASBA-OC on the specimens from DRC was 97.1% and 99.2%, respectively. On the specimens from Uganda we observed a sensitivity of 84.0% and a specificity of 98.5%.
The tests showed good sensitivity and specificity for the T. b. gambiense HAT in DRC but rather a low sensitivity for T. b. rhodesiense HAT in Uganda.
Author Summary
Diagnosis plays a central role in the control of human African trypanosomiasis (HAT) whose mainstay in disease control is chemotherapy. However, accurate diagnosis is hampered by the absence of sensitive techniques for parasite detection. Without concentrating the blood, detection thresholds can be as high as 10,000 trypanosomes per milliliter of blood. The polymerase chain reaction (PCR) and nucleic acid sequence-based amplification (NASBA) are promising molecular diagnostics that generally yield high sensitivity and could improve case detection. Recently, these two tests were coupled to oligochromatography (OC) for simplified and standardized detection of amplified products, eliminating the need for electrophoresis. In this study, we evaluated the diagnostic accuracy of these two novel tests on blood specimens from HAT patients and healthy endemic controls from D.R. Congo and Uganda. Both tests exhibited good sensitivity and specificity compared to the current diagnostic tests and may be valuable tools for sensitive and specific parasite detection in clinical specimens. These standardized molecular test formats open avenues for improved case detection, particularly in epidemiological studies and in disease diagnosis at reference centres.
PMCID: PMC2897845  PMID: 20625557
13.  Leishmania OligoC-TesT as a Simple, Rapid, and Standardized Tool for Molecular Diagnosis of Cutaneous Leishmaniasis in Peru▿  
Journal of Clinical Microbiology  2009;47(8):2560-2563.
Molecular methods such as PCR have become attractive tools for diagnosis of cutaneous leishmaniasis (CL), both for their high sensitivity and for their specificity. However, their practical use in routine diagnosis is limited due to the infrastructural requirements and the lack of any standardization. Recently, a simplified and standardized PCR format for molecular detection of Leishmania was developed. The Leishmania OligoC-TesT is based on simple and rapid detection using a dipstick with PCR-amplified Leishmania DNA. In this study, we estimated the diagnostic accuracy of the Leishmania OligoC-TesT for 61 specimens from 44 CL-suspected patients presenting at the leishmaniasis clinic of the Instituto de Medicina Tropical Alexander von Humboldt, Peru. On the basis of parasitological detection and the leishmanin skin test (LST), patients were classified as (i) confirmed CL cases, (ii) LST-positive cases, and (iii) LST-negative cases. The sensitivities of the Leishmania OligoC-TesT was 74% (95% confidence interval (CI), 60.5% to 84.1%) for lesion aspirates and 92% (95% CI, 81.2% to 96.9%) for scrapings. A significantly higher sensitivity was observed with a conventional PCR targeting the kinetoplast DNA on the aspirates (94%) (P = 0.001), while there was no significant difference in sensitivity for the lesion scrapings (88%) (P = 0.317). In addition, the Leishmania OligoC-TesT was evaluated for 13 CL-suspected patients in two different peripheral health centers in the central jungle of Peru. Our findings clearly indicate the high accuracy of the Leishmania OligoC-TesT for lesion scrapings for simple and rapid molecular diagnosis of CL in Peru.
PMCID: PMC2725664  PMID: 19553579
14.  T. cruzi OligoC-TesT: A Simplified and Standardized Polymerase Chain Reaction Format for Diagnosis of Chagas Disease 
PCR has evolved into one of the most promising tools for T. cruzi detection in the diagnosis and control of Chagas disease. However, general use of the technique is hampered by its complexity and the lack of standardization.
We here present the development and phase I evaluation of the T. cruzi OligoC-TesT, a simple and standardized dipstick format for detection of PCR amplified T. cruzi DNA. The specificity and sensitivity of the assay were evaluated on blood samples from 60 Chagas non-endemic and 48 endemic control persons and on biological samples from 33 patients, 7 reservoir animals, and 14 vectors collected in Chile.
Principal Findings
The lower detection limits of the T. cruzi OligoC-TesT were 1 pg and 1 to 10 fg of DNA from T. cruzi lineage I and II, respectively. The test showed a specificity of 100% (95% confidence interval [CI]: 96.6%–100%) on the control samples and a sensitivity of 93.9% (95% CI: 80.4%–98.3%), 100% (95% CI: 64.6%–100%), and 100% (95% CI: 78.5%–100%) on the human, rodent, and vector samples, respectively.
The T. cruzi OligoC-TesT showed high sensitivity and specificity on a diverse panel of biological samples. The new tool is an important step towards simplified and standardized molecular diagnosis of Chagas disease.
Author Summary
Chagas disease (American trypanosomiasis) is caused by the protozoan parasite Trypanosoma cruzi and represents a major public health problem in Latin America. Furthermore, growing human population movements extend the disease distribution to regions outside the South American continent. Accurate diagnosis is crucial in patient care and in preventing transmission through blood transfusion, organ transplantation, or vertical transmission from mother to child. Routine diagnosis of Trypanosoma cruzi infection generally is based on detection of the host's antibodies against the parasite. However, antibody detection tests are liable to specificity problems and are of limited use in assessing treatment outcome and congenital infections. The introduction of the polymerase chain reaction (PCR) to amplify specific DNA sequences opened promising diagnostic perspectives. Despite its reported high sensitivity and specificity, broad use of the PCR technique in diagnosis of Chagas disease is hampered by its complexity and the lack of any standardization. We here present the development and evaluation of the T. cruzi OligoC-TesT, a simple and standardized dipstick format for detection of PCR amplified T. cruzi DNA. The new tool is an important step towards simplified and standardized molecular diagnosis of Chagas disease.
PMCID: PMC2685481  PMID: 19503815
16.  Epidemiology and Clinical Features of Patients with Visceral Leishmaniasis Treated by an MSF Clinic in Bakool Region, Somalia, 2004–2006 
There are few reports describing the epidemiology of visceral leishmaniasis (VL) in Somalia. Over the years 2002 to 2005, a yearly average of 140 patients were reported from the Huddur centre in Bakool region, whereas in 2006, this number rose to 1002 patients. Given the limited amount of information on VL and the opportunity to compare features with the studies done in 2000 in this part of Somalia, we describe the epidemiologic and clinical features of patients who presented to the Huddur treatment centre of Bakool region, Somalia, using data routinely collected over a five-year observation period (2002–2006).
Methods used included the analysis of routine data on VL cases treated in the Huddur treatment centre, a retrospective study of records of patients admitted between 2004 and 2006, community leaders interviews, and analysis of blood specimens taken for parasite species identification in Antwerp Institute of Tropical Medicine.
Principal Findings
A total of 1671 VL patients were admitted to the Huddur centre from January 2002 until December 2006. Nearly all patients presented spontaneously to the health centre. Since 2002, the average patient load was stable, with an average of 140 admissions per year. By the end of 2005, the number of admissions dramatically increased to reach a 7-fold increase in 2006. The genotype of L. donovani identified in 2006 was similar to the one reported in 2002. 82% of total patients treated for VL originated from two districts of Bakool region, Huddur and Tijelow districts. Clinical recovery rate was 93.2% and case fatality rate 3.9%.
After four years of low but constant VL case findings, a major increase in VL was observed over a 16-month period in the Huddur VL centre. The profile of the patients was pediatric and mortality relatively low. Decentralized treatment centers, targeted active screening, and community sensitization will help decrease morbidity and mortality from VL in this endemic area. The true magnitude of VL in Somalia remains unknown. Further documentation to better understand transmission dynamics and thus define appropriate control measures will depend on the stability of the context and safe access to the Somali population.
Author Summary
Our paper describes the epidemiological features of visceral leishmaniasis in the Bakool region, South Central Somalia, over the years 2004 to 2006. Since 2000, Médecins Sans Frontières has been providing care for patients suffering from visceral leishmaniasis in Huddur, located in a region endemic for visceral leishmaniasis. By the end of 2005, we witnessed a dramatic increase in the number of patients admitted to the Huddur centre with visceral leishmaniasis. In our paper, we provide a description of the profile of patients admitted, thus giving an insight into the epidemiology of visceral leishmaniasis in a part of the world where relatively little has been documented and where the true magnitude of this neglected disease remains unknown.
PMCID: PMC2041816  PMID: 17989791

Results 1-16 (16)