PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-18 (18)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
Document Types
1.  Erythroid induction of K562 cells treated with mithramycin is associated with inhibition of raptor gene transcription and mammalian target of rapamycin complex 1 (mTORC1) functions 
Pharmacological Research  2015;91:57-68.
Graphical abstract
Rapamycin, an inhibitor of mTOR activity, is a potent inducer of erythroid differentiation and fetal hemoglobin production in β-thalassemic patients. Mithramycin (MTH) was studied to see if this inducer of K562 differentiation also operates through inhibition of mTOR. We can conclude from the study that the mTOR pathway is among the major transcript classes affected by mithramycin-treatment in K562 cells and a sharp decrease of raptor protein production and p70S6 kinase is detectable in mithramycin treated K562 cells. The promoter sequence of the raptor gene contains several Sp1 binding sites which may explain its mechanism of action. We hypothesize that the G + C-selective DNA-binding drug mithramycin is able to interact with these sequences and to inhibit the binding of Sp1 to the raptor promoter due to the following results: (a) MTH strongly inhibits the interactions between Sp1 and Sp1-binding sites of the raptor promoter (studied by electrophoretic mobility shift assays, EMSA); (b) MTH strongly reduces the recruitment of Sp1 transcription factor to the raptor promoter in intact K562 cells (studied by chromatin immunoprecipitation experiments, ChIP); (c) Sp1 decoy oligonucleotides are able to specifically inhibit raptor mRNA accumulation in K562 cells. In conclusion, raptor gene expression is involved in mithramycin-mediated induction of erythroid differentiation of K562 cells and one of its mechanism of action is the inhibition of Sp1 binding to the raptor promoter.
doi:10.1016/j.phrs.2014.11.005
PMCID: PMC4309890  PMID: 25478892
Raptor, regulatory associated protein of mTOR; Rictor, rapamycin-insensitive companion of mTOR; mTOR, mammalian target of rapamycin; mTORC1, mTOR complex 1; m-TORC2, mTOR complex 2; Sp1, specific protein 1; MTH, mithramycin; RAPA, rapamycin; ChIP, chromatin immunoprecipitation; EMSA, electrophoretic mobility shift assay; FBS, fetal bovine serum; PBS, phosphate-buffered saline; TBS, tris-buffered saline; HbF, fetal hemoglobin; ODN, oligonucleotide; Raptor; mTOR; Sp1; Mithramycin; Erythroid induction; Fetal hemoglobin
2.  Peptide nucleic acids targeting β-globin mRNAs selectively inhibit hemoglobin production in murine erythroleukemia cells 
In the treatment of hemoglobinopathies, amending altered hemoglobins and/or globins produced in excess is an important part of therapeutic strategies and the selective inhibition of globin production may be clinically beneficial. Therefore the development of drug-based methods for the selective inhibition of globin accumulation is required. In this study, we employed peptide nucleic acids (PNAs) to alter globin gene expression. The main conclusion of the present study was that PNAs designed to target adult murine β-globin mRNA inhibit hemoglobin accumulation and erythroid differentiation of murine erythroleukemia (MEL) cells with high efficiency and fair selectivity. No major effects were observed on cell proliferation. Our study supports the concept that PNAs may be used to target mRNAs that, similar to globin mRNAs, are expressed at very high levels in differentiating erythroid cells. Our data suggest that PNAs inhibit the excess production of globins involved in the pathophysiology of hemoglobinopathies.
doi:10.3892/ijmm.2014.2005
PMCID: PMC4249754  PMID: 25405921
peptide nucleic acids; sickle-cell anemia; β-globin; hemoglobin; erythroid differentiation
3.  Modulation of the Expression of the Proinflammatory IL-8 Gene in Cystic Fibrosis Cells by Extracts Deriving from Olive Mill Waste Water 
A persistent recruitment of neutrophils in the bronchi of cystic fibrosis (CF) patients contributes to aggravate the airway tissue damage, suggesting the importance of modulating the expression of chemokines, including IL-8 during the management of the CF patients. Polyphenols rich extracts derived from waste water from olive mill, obtained by a molecular imprinting approach, have been investigated in order to discover compounds able to reduce IL-8 expression in human bronchial epithelial cells (IB3-1 cells), derived from a CF patient with a ΔF508/W1282X mutant genotype and stimulated with TNF-alpha. Initially, electrophoretic mobility shift assays (EMSAs) were performed to determine whether the different active principles were able to inhibit the binding between transcription factor (TF) NF-kappaB and DNA consensus sequences. Among different representative active principles present in the extract, three compounds were selected, apigenin, oleuropein, and cyanidin chloride, which displayed remarkable activity in inhibiting NF-kappaB/DNA complexes. Utilizing TNF-alpha-treated IB3-1 cells as experimental model system, we demonstrated that apigenin and cyanidin chloride are able to modulate the expression of the NF-kappaB-regulated IL-8 gene, while oleuropein showed no effect in regulating the expression of the gene IL-8.
doi:10.1155/2013/960603
PMCID: PMC3723063  PMID: 23935691
4.  Development of K562 cell clones expressing β-globin mRNA carrying the β039 thalassaemia mutation for the screening of correctors of stop-codon mutations 
Nonsense mutations, giving rise to UAA, UGA and UAG stop codons within the coding region of mRNAs, promote premature translational termination and are the leading cause of approx. 30 % of inherited diseases, including cystic fibrosis, Duchenne muscular dystrophy and thalassaemia. For instance, in β039-thalassaemia the CAG (glutamine) codon is mutated to the UAG stop codon, leading to premature translation termination and to mRNA destabilization through the well-described NMD (nonsense-mediated mRNA decay). In order to develop an approach facilitating translation and, therefore, protection from NMD, aminoglycoside antibiotics have been tested on mRNAs carrying premature stop codons. These drugs decrease the accuracy in the codon–anticodon base-pairing, inducing a ribosomal read-through of the premature termination codons. Interestingly, recent papers have described drugs designed and produced for suppressing premature translational termination, inducing a ribosomal read-through of premature but not normal termination codons. These findings have introduced new hopes for the development of a pharmacological approach to the therapy of β039-thalassaemia. In this context, we started the development of a cellular model of the β039-thalassaemia mutation that could be used for the screening of a high number of aminoglycosides and analogous molecules. To this aim, we produced a lentiviral construct containing the β039-thalassaemia globin gene under a minimal LCR (locus control region) control and used this construct for the transduction of K562 cells, subsequently subcloned, with the purpose to obtain several K562 clones with different integration copies of the construct. These clones were then treated with Geneticin (also known as G418) and other aminoglycosides and the production of β-globin was analysed by FACS analysis. The results obtained suggest that this experimental system is suitable for the characterization of correction of the β039-globin mutation causing β-thalassaemia.
doi:10.1042/BA20080266
PMCID: PMC3582994  PMID: 19216718
aminoglycoside antibiotics; K562 cell; locus control region; nonsense mutation; thalassaemia
5.  Production of β-globin and adult hemoglobin following G418 treatment of erythroid precursor cells from homozygous β039 thalassemia patients 
American journal of hematology  2009;84(11):720-728.
In several types of thalassemia (including β039-thalassemia), stop codon mutations lead to premature translation termination and to mRNA destabilization through nonsense-mediated decay. Drugs (for instance aminoglycosides) can be designed to suppress premature termination, inducing a ribosomal readthrough. These findings have introduced new hopes for the development of a pharmacologic approach to the cure of this disease. However, the effects of aminoglycosides on globin mRNA carrying β-thalassemia stop mutations have not yet been investigated. In this study, we have used a lentiviral construct containing the β039- thalassemia globin gene under control of the β-globin promoter and a LCR cassette. We demonstrated by fluorescence-activated cell sorting (FACS) analysis the production of β-globin by K562 cell clones expressing the β039-thalassemia globin gene and treated with G418. More importantly, after FACS and high-performance liquid chromatography (HPLC) analyses, erythroid precursor cells from β039-thalassemia patients were demonstrated to be able to produce β-globin and adult hemoglobin after treatment with G418. This study strongly suggests that ribosomal readthrough should be considered a strategy for developing experimental strategies for the treatment of β0-thalassemia caused by stop codon mutations.
doi:10.1002/ajh.21539
PMCID: PMC3572903  PMID: 19810011
6.  Effects of decoy molecules targeting NF-kappaB transcription factors in Cystic fibrosis IB3–1 cells 
Artificial DNA, PNA & XNA  2012;3(2):97-296.
One of the clinical features of cystic fibrosis (CF) is a deep inflammatory process, which is characterized by production and release of cytokines and chemokines, among which interleukin 8 (IL-8) represents one of the most important. Accordingly, there is a growing interest in developing therapies against CF to reduce the excessive inflammatory response in the airways of CF patients. Since transcription factor NF-kappaB plays a critical role in IL-8 expression, the transcription factor decoy (TFD) strategy might be of interest. In order to demonstrate that TFD against NF-kappaB interferes with the NF-kappaB pathway we proved, by chromatin immunoprecipitation (ChIP) that treatment with TFD oligodeoxyribonucleotides of cystic fibrosis IB3–1 cells infected with Pseudomonas aeruginosa leads to a decrease occupancy of the Il-8 gene promoter by NF-kappaB factors. In order to develop more stable therapeutic molecules, peptide nucleic acids (PNAs) based agents were considered. In this respect PNA-DNA-PNA (PDP) chimeras are molecules of great interest from several points of view: (1) they can be complexed with liposomes and microspheres; (2) they are resistant to DNases, serum and cytoplasmic extracts; (3) they are potent decoy molecules. By using electrophoretic mobility shift assay and RT-PCR analysis we have demonstrated that (1) the effects of PDP/PDP NF-kappaB decoy chimera on accumulation of pro-inflammatory mRNAs in P.aeruginosa infected IB3–1 cells reproduce that of decoy oligonucleotides; in particular (2) the PDP/PDP chimera is a strong inhibitor of IL-8 gene expression; (3) the effect of PDP/PDP chimeras, unlike those of ODN-based decoys, are observed even in the absence of protection with lipofectamine. These informations are of great impact, in our opinion, for the development of stable molecules to be used in non-viral gene therapy of cystic fibrosis.
doi:10.4161/adna.21061
PMCID: PMC3429536  PMID: 22772035
NF-kappaB; transcription factor decoy; inflammation; Peptide Nucleic Acids; PNA-DNA chimeras
7.  A combined approach for β-thalassemia based on gene therapy-mediated adult hemoglobin (HbA) production and fetal hemoglobin (HbF) induction 
Annals of Hematology  2012;91(8):1201-1213.
Gene therapy might fall short in achieving a complete reversion of the β-thalassemic phenotype due to current limitations in vector design and myeloablative regimen. Following gene transfer, all or a large proportion of erythroid cells might express suboptimal levels of β-globin, impairing the therapeutic potential of the treatment. Our aim was to evaluate whether, in absence of complete reversion of the β-globin phenotype upon gene transfer, it is possible to use fetal hemoglobin induction to eliminate the residual α-globin aggregates and achieve normal levels of hemoglobin. Transgenic K562 cell lines and erythroid precursor cells from β039-thalassemia patients were employed. Gene therapy was performed with the lentiviral vector T9W. Induction of fetal hemoglobin was obtained using mithramycin. Levels of mRNA and hemoglobins were determined by qRT-PCR and HPLC. First, we analyzed the effect of mithramycin on K562 transgenic cell lines harboring different copies of a lentiviral vector carrying the human β-globin gene, showing that γ-globin mRNA expression and HbF production can be induced in the presence of high levels of β-globin gene expression and HbA accumulation. We then treated erythroid progenitor cells from β-thalassemic patients with T9W, which expresses the human β-globin gene and mithramycin separately or in combination. When transduction with our lentiviral vector is insufficient to completely eliminate the unpaired α-globin chains, combination of β-globin gene transfer therapy together with fetal hemoglobin induction might be very efficacious to remove the excess of α-globin proteins in thalassemic erythroid progenitor cells.
doi:10.1007/s00277-012-1430-5
PMCID: PMC3389244  PMID: 22460946
β-thalassemia; Gene therapy; Lentiviral vectors; HbF induction; Erythroid progenitor cells
8.  C(5) modified uracil derivatives showing antiproliferative and erythroid differentiation inducing activities on human chronic myelogenous leukemia K562 cells 
European Journal of Pharmacology  2011;672(1-3):30-37.
The K562 cell line has been proposed as a useful experimental system to identify anti-tumor compounds acting by inducing terminal erythroid differentiation. K562 cells exhibit a low proportion of hemoglobin-synthesizing cells under standard cell growth conditions, but are able to undergo terminal erythroid differentiation when treated with a variety of anti-tumor compounds. In this paper we report a screening study on a set of different modified C(5) uracil derivatives for the evaluation of their antiproliferative effect in connection with erythroid differentiation pathways, and for defining a new class of drug candidates for the treatment of chronic myelogenous leukemia. Activity of the derivatives tested can be classified in two effect: an antiproliferative effect linked to a high level of erythroid differentiation activity and an antiproliferative effect without activation of gamma globin genes The highest antiproliferative effect and erythroid induction was shown by compound 9, a thymine derivative bearing a n-octyl chain on nitrogen N(1), whereas thymine did not show any effect, suggesting the importance of the linear alkyl chain in position N(1). To our knowledge this compound should be considered among the most efficient inducers of erythroid differentiation of K562 cells. This work is the starting point for the quest of more effective and specific drugs for the induction of terminal erythroid differentiation, for leading new insights in the treatment of neoplastic diseases with molecules acting by inducing differentiation rather than by simply exerting cytotoxic effects.
doi:10.1016/j.ejphar.2011.09.024
PMCID: PMC3271358  PMID: 21958870
Erythroid differentiation; Tumor growth; Isoorotic acid derivative; Chronic myelogenous leukemia; Beta-thalassemia
9.  Encapsulation of eukaryotic cells in alginate microparticles: cell signaling by TNF-alpha through capsular structure of cystic fibrosis cells 
Entrapment of mammalian cells in natural or synthetic biomaterials represents an important tool for both basic and applied research in tissue engineering. For instance, the encapsulation procedures allow to physically isolate cells from the surrounding environment, after their transplantation maintaining the normal cellular physiology. The first part of the current paper describes different microencapsulation techniques including bulk emulsion technique, vibrating-nozzle procedure, gas driven mono-jet device protocol and microfluidic based approach. In the second part, the application of a microencapsulation procedure to the embedding of IB3-1 cells is also described. IB3-1 is a bronchial epithelial cell line, derived from a cystic fibrosis (CF) patient. Different experimental parameters of the encapsulation process were analyzed, including frequency and amplitude of vibration, polymer pumping rate and distance between the nozzle and the gelling bath. We have found that the microencapsulation procedure does not alter the viability of the encapsulated IB3-1 cells. The encapsulated IB3-1 cells were characterized in term of protein secretion, analysing the culture medium by Bio-Plex strategy. The analyzed factors include members of the interleukin family (IL-6), chemokines (IL-8 and MCP-1) and growth factors (G-CSF). The experiments demonstrated that most of the analyzed proteins, were secreted both by the free and encapsulated cells, even if in a different extent.
doi:10.1007/s12079-010-0105-z
PMCID: PMC3088797  PMID: 21484183
Biomaterials; Encapsulation; Alginate; Cystic fibrosis
10.  Bergamot (Citrus bergamia Risso) fruit extracts and identified components alter expression of interleukin 8 gene in cystic fibrosis bronchial epithelial cell lines 
BMC Biochemistry  2011;12:15.
Background
Cystic fibrosis (CF) airway pathology is a fatal, autosomal, recessive genetic disease characterized by extensive lung inflammation. After induction by TNF-α, elevated concentrations of several pro-inflammatory cytokines (i.e. IL-6, IL-1β) and chemokines (i.e. IL-8) are released from airway epithelial cells. In order to reduce the excessive inflammatory response in the airways of CF patients, new therapies have been developed and in this respect, medicinal plant extracts have been studied. In this article we have investigated the possible use of bergamot extracts (Citrus bergamia Risso) and their identified components to alter the expression of IL-8 associated with the cystic fibrosis airway pathology.
Methods
The extracts were chemically characterized by 1H-NMR (nuclear magnetic resonance), GC-FID (gas chromatography-flame ionization detector), GC-MS (gas chromatography-mass spectrometry) and HPLC (high pressure liquid chromatography). Both bergamot extracts and main detected chemical constituents were assayed for their biological activity measuring (a) cytokines and chemokines in culture supernatants released from cystic fibrosis IB3-1 cells treated with TNF-α by Bio-Plex cytokine assay; (b) accumulation of IL-8 mRNA by real-time PCR.
Results
The extracts obtained from bergamot (Citrus bergamia Risso) epicarps contain components displaying an inhibitory activity on IL-8. Particularly, the most active molecules were bergapten and citropten. These effects have been confirmed by analyzing mRNA levels and protein release in the CF cellular models IB3-1 and CuFi-1 induced with TNF-α or exposed to heat-inactivated Pseudomonas aeruginosa.
Conclusions
These obtained results clearly indicate that bergapten and citropten are strong inhibitors of IL-8 expression and could be proposed for further studies to verify possible anti-inflammatory properties to reduce lung inflammation in CF patients.
doi:10.1186/1471-2091-12-15
PMCID: PMC3095539  PMID: 21496221
11.  Induction by TNF-α of IL-6 and IL-8 in Cystic Fibrosis Bronchial IB3-1 Epithelial Cells Encapsulated in Alginate Microbeads 
We have developed a microencapsulation procedure for the entrapment and manipulation of IB3-1 cystic fibrosis cells. The applied method is based on generation of monodisperse droplets by a vibrational nozzle. Different experimental parameters were analyzed, including frequency and amplitude of vibration, polymer pumping rate and distance between the nozzle and the gelling bath. We have found that the microencapsulation procedure does not alter the viability of the encapsulated IB3-1 cells. The encapsulated IB3-1 cells were characterized in term of secretomic profile, analyzing the culture medium by Bio-Plex strategy. The experiments demonstrated that most of the analyzed proteins, were secreted both by the free and encapsulated cells, even if in a different extent. In order to determine the biotechnological applications of this procedure, we determined whether encapsulated IB3-1 cells could be induced to pro-inflammatory responses, after treatment with TNF-α. In this experimental set-up, encapsulated and free IB3-1 cells were treated with TNF-α, thereafter the culture media from both cell populations were collected. As expected, TNF-α induced a sharp increase in the secretion of interleukins, chemokines and growth factors. Of great interest was the evidence that induction of interleukin-6 and interleukin-8 occurs also by encapsulated IB3-1 cells.
doi:10.1155/2010/907964
PMCID: PMC2946646  PMID: 20936184
12.  Release of sICAM-1 in Oocytes and In Vitro Fertilized Human Embryos 
PLoS ONE  2008;3(12):e3970.
Background
During the last years, several studies have reported the significant relationship between the production of soluble HLA-G molecules (sHLA-G) by 48–72 hours early embryos and an increased implantation rate in IVF protocols. As consequence, the detection of HLA-G modulation was suggested as a marker to identify the best embryos to be transferred. On the opposite, no suitable markers are available for the oocyte selection.
Methodology/Principal Findings
The major finding of the present paper is that the release of ICAM-1 might be predictive of oocyte maturation. The results obtained are confirmed using three independent methodologies, such as ELISA, Bio-Plex assay and Western blotting. The sICAM-1 release is very high in immature oocytes, decrease in mature oocytes and become even lower in in vitro fertilized embryos. No significant differences were observed in the levels of sICAM-1 release between immature oocytes with different morphological characteristics. On the contrary, when the mature oocytes were subdivided accordingly to morphological criteria, the mean sICAM-I levels in grade 1 oocytes were significantly decreased when compared to grade 2 and 3 oocytes.
Conclusions/Significance
The reduction of the number of fertilized oocytes and transferred embryos represents the main target of assisted reproductive medicine. We propose sICAM-1 as a biochemical marker for oocyte maturation and grading, with a possible interesting rebound in assisted reproduction techniques.
doi:10.1371/journal.pone.0003970
PMCID: PMC2599884  PMID: 19092999
13.  Induction of apoptosis of human primary osteoclasts treated with extracts from the medicinal plant Emblica officinalis 
Background
Osteoclasts (OCs) are involved in rheumatoid arthritis and in several pathologies associated with bone loss. Recent results support the concept that some medicinal plants and derived natural products are of great interest for developing therapeutic strategies against bone disorders, including rheumatoid arthritis and osteoporosis. In this study we determined whether extracts of Emblica officinalis fruits display activity of possible interest for the treatment of rheumatoid arthritis and osteoporosis by activating programmed cell death of human primary osteoclasts.
Methods
The effects of extracts from Emblica officinalis on differentiation and survival of human primary OCs cultures obtained from peripheral blood were determined by tartrate-acid resistant acid phosphatase (TRAP)-positivity and colorimetric MTT assay. The effects of Emblica officinalis extracts on induction of OCs apoptosis were studied using TUNEL and immunocytochemical analysis of FAS receptor expression. Finally, in vitro effects of Emblica officinalis extracts on NF-kB transcription factor activity were determined by gel shift experiments.
Results
Extracts of Emblica officinalis were able to induce programmed cell death of mature OCs, without altering, at the concentrations employed in our study, the process of osteoclastogenesis. Emblica officinalis increased the expression levels of Fas, a critical member of the apoptotic pathway. Gel shift experiments demonstrated that Emblica officinalis extracts act by interfering with NF-kB activity, a transcription factor involved in osteoclast biology. The data obtained demonstrate that Emblica officinalis extracts selectively compete with the binding of transcription factor NF-kB to its specific target DNA sequences. This effect might explain the observed effects of Emblica officinalis on the expression levels of interleukin-6, a NF-kB specific target gene.
Conclusion
Induction of apoptosis of osteoclasts could be an important strategy both in interfering with rheumatoid arthritis complications of the bone skeleton leading to joint destruction, and preventing and reducing osteoporosis. Accordingly, we suggest the application of Emblica officinalis extracts as an alternative tool for therapy applied to bone diseases.
doi:10.1186/1472-6882-8-59
PMCID: PMC2587459  PMID: 18973662
14.  Docking of molecules identified in bioactive medicinal plants extracts into the p50 NF-kappaB transcription factor: correlation with inhibition of NF-kappaB/DNA interactions and inhibitory effects on IL-8 gene expression 
Background
The transcription factor NF-kappaB is a very interesting target molecule for the design on anti-tumor, anti-inflammatory and pro-apoptotic drugs. However, the application of the widely-used molecular docking computational method for the virtual screening of chemical libraries on NF-kappaB is not yet reported in literature. Docking studies on a dataset of 27 molecules from extracts of two different medicinal plants to NF-kappaB-p50 were performed with the purpose of developing a docking protocol fit for the target under study.
Results
We enhanced the simple docking procedure by means of a sort of combined target- and ligand-based drug design approach. Advantages of this combination strategy, based on a similarity parameter for the identification of weak binding chemical entities, are illustrated in this work with the discovery of a new lead compound for NF-kappaB. Further biochemical analyses based on EMSA were performed and biological effects were tested on the compound exhibiting the best docking score. All experimental analysis were in fairly good agreement with molecular modeling findings.
Conclusion
The results obtained sustain the concept that the docking performance is predictive of a biochemical activity. In this respect, this paper represents the first example of successfully individuation through molecular docking simulations of a promising lead compound for the inhibition of NF-kappaB-p50 biological activity and modulation of the expression of the NF-kB regulated IL8 gene.
doi:10.1186/1472-6807-8-38
PMCID: PMC2543017  PMID: 18768082
15.  Inhibitory Effects of Bangladeshi Medicinal Plant Extracts on Interactions between Transcription Factors and Target DNA Sequences 
Several transcription factors (TFs) play crucial roles in governing the expression of different genes involved in the immune response, embryo or cell lineage development, cell apoptosis, cell cycle progression, oncogenesis, repair and fibrosis processes and inflammation. As far as inflammation, TFs playing pivotal roles are nuclear factor kappa B (NF-kB), activator protein (AP-1), signal transducer and activator of transcription (STATs), cAMP response element binding protein (CREB) and GATA-1 factors. All these TFs regulate the expression of pro-inflammatory cytokines and are involved in the pathogenesis of a number of human disorders, particularly those with an inflammatory component. Since several medicinal plants can be employed to produce extracts exhibiting biological effects and because alteration of gene transcription represents a very interesting approach to control the expression of selected genes, this study sought to verify the ability of several extracts derived from Bangladeshi medicinal plants in interfering with molecular interactions between different TFs and specific DNA sequences. We first analyzed the antiproliferative activity of 19 medicinal plants on different human cell lines, including erythroleukemia K562, B lymphoid Raji and T lymphoid Jurkat cell lines. Secondly, we employed the electrophoretic mobility shift assay as a suitable technique for a fast screening of plant extracts altering the binding between NF-kB, AP-1, GATA-1, STAT-3, CREB and the relative target DNA elements.
doi:10.1093/ecam/nem042
PMCID: PMC2529391  PMID: 18830455
AP-1; CREB; GATA-1; gene expression; medicinal plants; NF-kB; STAT-3; transcription factors
16.  Fetal Hemoglobin Inducers from the Natural World: A Novel Approach for Identification of Drugs for the Treatment of β-Thalassemia and Sickle-Cell Anemia 
The objective of this review is to present examples of lead compounds identified from biological material (fungi, plant extracts and agro-industry material) and of possible interest in the field of a pharmacological approach to the therapy of β-thalassemia using molecules able to stimulate production of fetal hemoglobin (HbF) in adults. Concerning the employment of HbF inducers as potential drugs for pharmacological treatment of β-thalassemia, the following conclusions can be reached: (i) this therapeutic approach is reasonable, on the basis of the clinical parameters exhibited by hereditary persistence of fetal hemoglobin patients, (ii) clinical trials (even if still limited) employing HbF inducers were effective in ameliorating the symptoms of β-thalassemia patients, (iii) good correlation of in vivo and in vitro results of HbF synthesis and γ-globin mRNA accumulation indicates that in vitro testing might be predictive of in vivo responses and (iv) combined use of different inducers might be useful to maximize HbF, both in vitro and in vivo. In this review, we present three examples of HbF inducers from the natural world: (i) angelicin and linear psoralens, contained in plant extracts from Angelica arcangelica and Aegle marmelos, (ii) resveratrol, a polyphenol found in grapes and several plant extracts and (iii) rapamycin, isolated from Streptomyces hygroscopicus.
doi:10.1093/ecam/nem139
PMCID: PMC2686630  PMID: 18955291
fetal hemoglobin; β-thalassemia; rapamycin; medicinal plants; resveratrol; red wine; psoralens
17.  Formulations for natural and peptide nucleic acids based on cationic polymeric submicron particles 
AAPS PharmSci  2003;6(1):10-21.
This article describes the production and characterization of cationic submicron particles constituted with Eudragit RS 100, plus different cationic surfactants, such as dioctadecyl-dimethyl-ammonium bromide (DDAB18) and diisobutyphenoxyethyl-dimethylbenzyl ammonium chloride (DEBDA), as a transport and delivery system for DNA/DNA and DNA/peptide nucleic acid (PNA) hybrids and PNA-DNA chimeras. Submicron particles could offer advantages over other delivery systems because they maintain unaltered physicochemical properties for long time periods, allowing long-term storage, and are suitable for industrial production. Submicron particles were characterized in terms of size, size distribution, morphology, and zeta potential. Moreover, the in vitro activity and ability of submicron particles to complex different types of nucleic acids were described. Finally, the ability of submicron particles to deliver functional genes to cells cultured in vitro was determined by a luciferase activity assay, demonstrating that submicron particles possess superior transfection efficiency with respect to commercially available, liposome-based transfection kits.
doi:10.1208/ps060102
PMCID: PMC2750937  PMID: 18465254
peptide nucleic acids; delivery; submicron particles
18.  Characterization of a Major Histocompatibility Complex Class II X-Box-Binding Protein Enhancing Tat-Induced Transcription Directed by the Human Immunodeficiency Virus Type 1 Long Terminal Repeat 
Journal of Virology  2000;74(19):8989-9001.
The X-box element present within the promoter region of genes belonging to the major histocompatibility complex (MHC) plays a pivotal role in the expression of class II molecules, since it contains the binding sites for several well-characterized transcription factors. We have analyzed a randomly selected compilation of viral genomes for the presence of elements homologous to the X box of the HLA-DRA gene. We found that human immunodeficiency virus type 1 (HIV-1) shows the highest frequency of X-like box elements per 1,000 bases of genome. Within the HIV-1 genome, we found an X-like motif in the TAR region of the HIV-1 long terminal repeat (LTR), a regulative region playing a pivotal role in Tat-induced HIV-1 transcription. The use of a decoy approach for nuclear proteins binding to this element, namely, XMAS (X-like motif activator sequence), performed by transfection of multiple copies of this sequence into cells carrying an integrated LTR-chloramphenicol acetyltransferase construct, suggests that this element binds to nuclear proteins that enhance Tat-induced transcription. In this report we have characterized two proteins, one binding to the XMAS motif and the other to the flanking regions of XMAS. Mobility shift assays performed on crude nuclear extracts or enriched fractions suggest that similar proteins bind to XMAS from HIV-1 and the X box of the HLA-DRA gene. Furthermore, a UV cross-linking assay suggests that one protein of 47 kDa, termed FAX (factor associated with XMAS)-1, binds to the XMAS of HIV-1. The other protein of 56 kDa was termed FAX-2. In a decoy ex vivo experiment, it was found that sequences recognizing both proteins are required to inhibit Tat-induced HIV-1 LTR-driven transcription. Taken together, the data reported in this paper suggest that XMAS and nearby sequences modulate Tat-induced HIV-1 transcription by binding to the X-box-binding proteins FAX-1 and FAX-2. The sequence homology between XMAS and X box is reflected in binding of a common protein, FAX-1, and similar functional roles in gene expression. To our knowledge, this is the first report showing that transcription factors binding to the X box of the MHC class II genes enhance the transcription of HIV-1.
PMCID: PMC102095  PMID: 10982343

Results 1-18 (18)