Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Light chain editors of anti-DNA receptors in human B cells 
Human L chain repertoire includes editor L chains that appear to regulate anti-DNA B cells and shape the B cell repertoire.
Receptor editing is a mechanism of self-tolerance used in newly generated B cells. The expressed heavy (H) or light (L) chain of an autoreactive receptor is replaced by upstream V genes which eliminate or modify autoreactivity. Editing of anti-DNA receptors has been characterized in anti-DNA transgenic mouse models including 3H9, 3H9/56R, and their revertant 3H9GL. Certain L chains, termed editors, rescue anti-DNA B cells by neutralizing or modifying DNA binding of the H chain. This editing mechanism acts on the natural H chain repertoire; endogenous H chains with anti-DNA features are expressed primarily in combination with editor L chains. We ask whether a similar set of L chains exists in the human repertoire, and if so, do they edit H chains with anti-DNA signatures? We compared the protein sequences of mouse editors to all human L chains and found several human L chains similar to mouse editors. These L chains diminish or veto anti-DNA binding when expressed with anti-DNA H chains. The human H chains expressed with these L chains also have relatively high arginine (Arg) content in the H chain complementarity determining region (H3), suggesting that receptor editing plays a role in establishing tolerance to DNA in humans.
PMCID: PMC3920568  PMID: 24470445
2.  Clearance of Apoptotic Bodies, NETs, and Biofilm DNA: Implications for Autoimmunity 
PMCID: PMC4115591  PMID: 25126089
apoptosis; NETosis; clearance; autoimmunity; autoantibodies; lupus
3.  Epigenetics of Autoantigens: New Opportunities for Therapy of Autoimmune Diseases 
Genetics & Epigenetics  2013;5:63-70.
The field of epigenetics requires that traditional divisions between scientific disciplines give way to cross-fertilization of concepts and ideas from different areas of investigation. Such is the case with research in autoimmunity. Recent discoveries of stimuli that induce autoimmunity reveal that epigenetic marks of autoantigens are recognized by autoreactive B and T cell receptors. Thus, insights into the initiation of autoimmunity, its prevention and therapy will arise from understanding the biochemistry, cell biology and microbiology of autoantigen epigenetics. Here, we highlight potential benefits from the inhibition of a histone modifying enzyme and the administration of a phosphorylated, spliceosome-derived peptide, in the treatment of autoimmunity.
PMCID: PMC4222337  PMID: 25512708
Lupus; autoimmunity; post-translational modifications; deimination; phosphorylation; clinical trial; neutrophil extracellular traps; histones; spliceosome; U1-70; Lupuzor
4.  Neutrophil extracellular traps (NETs): Double-edged swords of innate immunity1 
Spectacular images of neutrophils ejecting nuclear chromatin and bactericidal proteins, in response to microbes, were first reported in 2004. As externalized chromatin could entangle bacteria, these structures were named neutrophil extracellular traps (NETs). Subsequent studies identified microorganisms and sterile conditions that stimulate NETs, and additional cell types that release extracellular chromatin. NETs’ release is the most dramatic stage in a cell death process called NETosis. Experimental evidence suggests that NETs participate in pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis and vascular disorders. Exaggerated NETosis or diminished NET clearance likely increases risk of autoreactivity to NET components. The biological significance of NETs is just beginning to be explored. A more complete integration of NETosis within immunology and pathophysiology will require better understanding of NET properties associated with specific disease states and microbial infections. This may lead to the identification of important therapeutic targets.
PMCID: PMC3439169  PMID: 22956760
Neutrophil extracellular traps; autoimmunity; neutrophils; infections
5.  Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release 
In response to inflammation, neutrophils deiminate histones and externalize chromatin. Neutrophil extracellular traps (NETs) are an innate immune defense mechanism, yet NETs also may aggravate chronic inflammatory and autoimmune disorders. Activation of peptidylarginine deiminase 4 (PAD4) is associated with NET release (NETosis) but the precise mechanisms of PAD4 regulation are unknown. We observed that, in human neutrophils, calcium ionophore induced histone deimination, whereas phorbol myristate acetate (PMA), an activator of protein kinase C (PKC), suppressed ionophore-induced deimination. Conversely, low doses of chelerythrine and sanguinarine, two inhibitors of PKC, reversed PMA inhibition and enhanced ionophore-stimulated deimination. In addition, a peptide inhibitor of PKCα superinduced ionophore activation of PAD4, thus identifying PKCα as the PMA-induced inhibitor of PAD4. At higher doses, chelerythrine, sanguinarine, and structurally unrelated PKC inhibitors blocked histone deimination, suggesting that a different PKC isoform activates histone deimination. We identify PKCζ as activator of PAD4 because a specific peptide inhibitor of this PKC isoform suppressed histone deimination. Confocal microscopy confirmed that, in the presence of PMA, NETosis proceeds without detectable histone deimination, and that ionophore cooperates with PMA to induce more extensive NET release. Broad inhibition of PKC by chelerythrine or specific inhibition of PKCζ suppressed NETosis. Our observations thus reveal an intricate antagonism between PKC isoforms in the regulation of histone deimination, identify a dominant role for PKCα in the repression of histone deimination, and assign essential functions to PKCζ in the activation of PAD4 and the execution of NETosis. The precise balance between opposing PKC isoforms in the regulation of NETosis affirms the idea that NET release underlies specific and vitally important evolutionary selection pressures.
PMCID: PMC3576869  PMID: 23430963
NETosis; PAD4; protein kinase C; deimination; inflammation
7.  Knotting the NETs: Analyzing histone modifications in neutrophil extracellular traps 
Neutrophil extracellular chromatin traps (NETs) are a recently described mechanism of innate immune responses to bacteria and fungi. Evidence indicates that NETs are induced by inflammation, that they contribute to diverse disease pathologies, and that they associate with bactericidal substances. Genomic DNA is released in NETs, leading to a cell death that has been labeled NETosis. Although NETosis clearly differs from apoptosis, the classical form of cell death, recent experiments indicate a connection between NETosis and autophagy. The regulated deployment of NETs may require covalent modification of histones, the basic DNA-binding proteins that organize chromatin in the cell's nucleus and within NETs. Histone modification by peptidylarginine deiminase 4 (PAD4) is necessary for NET release. The functions of additional histone modifications, however, remain to be tested.
PMCID: PMC3446426  PMID: 22524286
8.  Armed and accurate: engineering cytotoxic T cells for eradication of leukemia 
BMC Biotechnology  2012;12:6.
Translational medicine depends on a rapid and efficient exchange of results between the bench and the bedside. A recent example from the field of cancer immunotherapy highlights the essential nature of this exchange. Methods have been developed to convert a patient's cytotoxic T cells into efficient and specific killers of cancer cells in patients with leukemia. By using recombinant DNA techniques, a lentiviral vector was constructed to express chimeric antigen receptors in cytotoxic T cells from patients with advanced chronic lymphocytic leukemia. The purpose of the chimeric receptors was to direct the cytotoxic T cell activity against cells causing the cancer. The effect of infusing the engineered T cells back into the cancer patients was tested in a Phase I trial at the University of Pennsylvania, and the initial results were described in two articles from the research team of Dr. Carl June. The remarkable success of this trial should energize further applications of biotechnology in the development of new cancer immunotherapies.
PMCID: PMC3306188  PMID: 22316161
9.  Divergent Members of a Single Autoreactive B Cell Clone Retain Specificity for Apoptotic Blebs 
Molecular immunology  2006;44(8):1914-1921.
Specificity for double-stranded DNA can arise due to somatic mutations within one of the branches of an autoreactive B cell clone. However, it is not known whether a different autospecificity predates anti-dsDNA and whether separate offshoots of an expanding B cell clone retain or evolve alternative specificities. We compared 3H9, an anti-dsDNA IgG, to 4H8 and 1A11, antibodies produced by hybridomas representing an alternative branch of the 3H9 B cell clone. All three IgG bound chromatin in ELISA and apoptotic cells in confocal microscopy, yet only 3H9 bound dsDNA, as measured by plasmon resonance. Moreover, we demonstrate that despite the unique specificity of 3H9 for dsDNA, all three clone members exhibited indistinguishable binding to chromatin. The binding to chromatin and apoptotic cells was unaffected by N-linked glycosylation in L chain CDR1, a modification that results from a replacement of serine 26 with asparagine in 4H8 and 1A11. These data provide the first evidence that specificity for nucleosome epitopes on apoptotic cells provides the initial positive stimulus for somatic variants that comprise a B cell clone, including those that subsequently acquire specificity for dsDNA. Conversely, selection of autoreactive B cells for binding to apoptotic cells leads to clonal expansion, antibody diversification, and the development of linked sets of anti-nuclear autoantibodies.
PMCID: PMC1812796  PMID: 17084454
Anti-DNA; Autoantibody; Autoimmunity; Apoptosis; B lymphocytes; Somatic Mutations; Systemic Lupus Erythematosus
10.  Heterogeneous Nuclear Ribonucleoprotein P2 Is an Autoantibody Target in Mice Deficient for Mer, Axl, and Tyro3 Receptor Tyrosine Kinases1 
Deficiencies in clearance of apoptotic cells predispose to the development of autoimmune disease. This is evident in mice lacking the receptor tyrosine kinases Tyro3, Axl, and Mer. Deficient mice exhibit an increased abundance of apoptotic cells in tissues and manifest diverse autoimmune conditions. To test these mice for the presence of autoantibodies to apoptotic cells, we generated spontaneous splenic B cell hybridomas and used a novel microscopy screen to detect Ab binding to apoptotic Jurkat cells. From hybridomas secreting IgG Abs reactive with apoptotic cells, we selected one that recreated the major serum specificity for apoptotic cells. The Ab LHC7.15 bound to an Ag that is differentially distributed between the nucleus and the cytoplasm in live and apoptotic cells. In late apoptotic cells, the Ag coalesces into aggregates that bleb from the cell surface. Immunopurification of the Ag, followed by mass spectrometry, identified a protein of 69 kDa whose partial sequence matched heterogeneous nuclear ribonucleoprotein P2. This multifunctional protein binds DNA, RNA, and several known ribonucleoprotein autoantigens. Our observations indicate that a ribonucleoprotein complex, formed and translocated to the cell surface in apoptosis, represents a potent stimulus for breaking tolerance and inducing systemic autoimmunity in mice with defective clearance of cell remnants.
PMCID: PMC1564271  PMID: 16365397
11.  DNA-dependent Protein Kinase Activity Is Not Required for Immunoglobulin Class Switching 
The Journal of Experimental Medicine  2002;196(11):1483-1495.
Class switch recombination (CSR), similar to V(D)J recombination, is thought to involve DNA double strand breaks and repair by the nonhomologous end–joining pathway. A key component of this pathway is DNA-dependent protein kinase (DNA-PK), consisting of a catalytic subunit (DNA-PKcs) and a DNA-binding heterodimer (Ku70/80). To test whether DNA-PKcs activity is essential for CSR, we examined whether IgM+ B cells from scid mice with site-directed H and L chain transgenes were able to undergo CSR. Although B cells from these mice were shown to lack DNA-PKcs activity, they were able to switch from IgM to IgG or IgA with close to the same efficiency as B cells from control transgenic and nontransgenic scid/+ mice, heterozygous for the scid mutation. We conclude that CSR, unlike V(D)J recombination, can readily occur in the absence of DNA-PKcs activity. We suggest nonhomologous end joining may not be the (primary or only) mechanism used to repair DNA breaks during CSR.
PMCID: PMC2194268  PMID: 12461083
Ig transgenes; scid B cells; nonhomologous end joining; B cell anergy

Results 1-11 (11)