Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
author:("neel, Indira")
1.  Felty’s Syndrome Autoantibodies Bind to Deiminated Histones and Neutrophil Extracellular Chromatin Traps 
Arthritis and rheumatism  2011;64(4):982-992.
To test the hypothesis that autoantigen modifications by peptidylarginine deiminase type 4 (PAD-4) increase immunoreactivity.
We assembled sera from patients with systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Felty’s syndrome (FS), and antineutrophil cytoplasmic antibody–associated vasculitides (AAVs), as well as sera from control subjects without autoimmune diseases. The sera were tested for binding to activated neutrophils, deiminated histones, and neutrophil extracellular chromatin traps (NETs). IgG binding to lipopolysaccharide-activated neutrophils was assessed with confocal microscopy, and binding to in vitro–deiminated histones was measured using enzyme-linked immunosorbent assay (ELISA) and Western blotting. In addition, we quantitated histone deimination in freshly isolated neutrophils from the blood of patients and control subjects.
Increased IgG reactivity with activated neutrophils, particularly binding to NETs, was paralleled by preferential binding to deiminated histones over nondeiminated histones by ELISA in a majority of sera from FS patients but only in a minority of sera from SLE and RA patients. Immunoblotting revealed autoantibody preference for deiminated histones H3, H4, and H2A in most FS patients and in a subset of SLE and RA patients. In patients with AAVs, serum IgG preferentially bound nondeiminated histones over deiminated histones. Increased levels of deiminated histones were detected in neutrophils from RA patients.
Circulating autoantibodies in FS are preferentially directed against PAD-4–deiminated histones and bind to activated neutrophils and NETs. Thus, increased reactivity with modified autoantigens in FS implies a direct contribution of neutrophil activation and the production of NET-associated nuclear autoantigens in the initiation or progression of FS.
PMCID: PMC4729190  PMID: 22034172
2.  Current Challenges and Limitations in Antibody-Based Detection of Citrullinated Histones 
Studies on NETosis demand reliable and convenient markers to monitor the progress of this form of cell death. Because a determining step in the release of nuclear chromatin NETs requires the conversion of arginine residues to citrulline residues in histones by peptidylarginine deiminase, citrullinated histones can provide such a marker. Here, we evaluate antibody reagents for the detection of citrulline residues in histones and observe alarming differences between commercial antisera and mouse and rabbit monoclonal antibodies in their ability to detect their nominal target residues. Differences between antibodies that are currently used to detect citrulline residues in histones could jeopardize efforts to reach a scientific consensus and instead lead to inconsistent and even conflicting conclusions regarding the regulation of histone deimination. Our results will assist others in planning their initial or ongoing studies on peptidylarginine deiminase activity with the use of currently available antibodies. Furthermore, we argue that, along with the careful attention to experimental conditions and calcium concentrations, validated antibody reagents are urgently needed to avoid possible setbacks in the research on NETosis.
PMCID: PMC5122592  PMID: 27933065
NETs; NETosis; deimination; peptidylarginine deiminase; antibodies; immunodetection; citrulline
3.  Circulating Autoantibodies in Age-Related Macular Degeneration Recognize Human Macular Tissue Antigens Implicated in Autophagy, Immunomodulation, and Protection from Oxidative Stress and Apoptosis 
PLoS ONE  2015;10(12):e0145323.
We investigated sera from elderly subjects with and without age-related macular degeneration (AMD) for presence of autoantibodies (AAbs) against human macular antigens and characterized their identity.
Sera were collected from participants in the Age-Related Maculopathy Ancillary (ARMA) Study, a cross-sectional investigation ancillary to the Health ABC Study, enriched with participants from the general population. The resulting sample (mean age: 79.2±3.9 years old) included subjects with early to advanced AMD (n = 131) and controls (n = 231). Sera were tested by Western blots for immunoreactive bands against human donor macular tissue homogenates. Immunoreactive bands were identified and graded, and odds ratios (OR) calculated. Based on these findings, sera were immunoprecipitated, and subjected to 2D gel electrophoresis (GE). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify the targets recognized by circulating AAbs seen on 2D-GE, followed by ELISAs with recombinant proteins to confirm LC-MS/MS results, and quantify autoreactivities.
In AMD, 11 immunoreactive bands were significantly more frequent and 13 were significantly stronger than in controls. Nine of the more frequent bands also showed stronger reactivity. OR estimates ranged between 4.06 and 1.93, and all clearly excluded the null value. Following immunoprecipitation, 2D-GE and LC-MS/MS, five of the possible autoreactivity targets were conclusively identified: two members of the heat shock protein 70 (HSP70) family, HSPA8 and HSPA9; another member of the HSP family, HSPB4, also known as alpha-crystallin A chain (CRYAA); Annexin A5 (ANXA5); and Protein S100-A9, also known as calgranulin B that, when complexed with S100A8, forms calprotectin. ELISA testing with recombinant proteins confirmed, on average, significantly higher reactivities against all targets in AMD samples compared to controls.
Consistent with other evidence supporting the role of inflammation and the immune system in AMD pathogenesis, AAbs were identified in AMD sera, including early-stage disease. Identified targets may be mechanistically linked to AMD pathogenesis because the identified proteins are implicated in autophagy, immunomodulation, and protection from oxidative stress and apoptosis. In particular, a role in autophagy activation is shared by all five autoantigens, raising the possibility that the detected AAbs may play a role in AMD via autophagy compromise and downstream activation of the inflammasome. Thus, we propose that the detected AAbs provide further insight into AMD pathogenesis and have the potential to contribute to disease biogenesis and progression.
PMCID: PMC4696815  PMID: 26717306
4.  Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release 
In response to inflammation, neutrophils deiminate histones and externalize chromatin. Neutrophil extracellular traps (NETs) are an innate immune defense mechanism, yet NETs also may aggravate chronic inflammatory and autoimmune disorders. Activation of peptidylarginine deiminase 4 (PAD4) is associated with NET release (NETosis) but the precise mechanisms of PAD4 regulation are unknown. We observed that, in human neutrophils, calcium ionophore induced histone deimination, whereas phorbol myristate acetate (PMA), an activator of protein kinase C (PKC), suppressed ionophore-induced deimination. Conversely, low doses of chelerythrine and sanguinarine, two inhibitors of PKC, reversed PMA inhibition and enhanced ionophore-stimulated deimination. In addition, a peptide inhibitor of PKCα superinduced ionophore activation of PAD4, thus identifying PKCα as the PMA-induced inhibitor of PAD4. At higher doses, chelerythrine, sanguinarine, and structurally unrelated PKC inhibitors blocked histone deimination, suggesting that a different PKC isoform activates histone deimination. We identify PKCζ as activator of PAD4 because a specific peptide inhibitor of this PKC isoform suppressed histone deimination. Confocal microscopy confirmed that, in the presence of PMA, NETosis proceeds without detectable histone deimination, and that ionophore cooperates with PMA to induce more extensive NET release. Broad inhibition of PKC by chelerythrine or specific inhibition of PKCζ suppressed NETosis. Our observations thus reveal an intricate antagonism between PKC isoforms in the regulation of histone deimination, identify a dominant role for PKCα in the repression of histone deimination, and assign essential functions to PKCζ in the activation of PAD4 and the execution of NETosis. The precise balance between opposing PKC isoforms in the regulation of NETosis affirms the idea that NET release underlies specific and vitally important evolutionary selection pressures.
PMCID: PMC3576869  PMID: 23430963
NETosis; PAD4; protein kinase C; deimination; inflammation
5.  Knotting the NETs: Analyzing histone modifications in neutrophil extracellular traps 
Neutrophil extracellular chromatin traps (NETs) are a recently described mechanism of innate immune responses to bacteria and fungi. Evidence indicates that NETs are induced by inflammation, that they contribute to diverse disease pathologies, and that they associate with bactericidal substances. Genomic DNA is released in NETs, leading to a cell death that has been labeled NETosis. Although NETosis clearly differs from apoptosis, the classical form of cell death, recent experiments indicate a connection between NETosis and autophagy. The regulated deployment of NETs may require covalent modification of histones, the basic DNA-binding proteins that organize chromatin in the cell's nucleus and within NETs. Histone modification by peptidylarginine deiminase 4 (PAD4) is necessary for NET release. The functions of additional histone modifications, however, remain to be tested.
PMCID: PMC3446426  PMID: 22524286
6.  Divergent Members of a Single Autoreactive B Cell Clone Retain Specificity for Apoptotic Blebs 
Molecular immunology  2006;44(8):1914-1921.
Specificity for double-stranded DNA can arise due to somatic mutations within one of the branches of an autoreactive B cell clone. However, it is not known whether a different autospecificity predates anti-dsDNA and whether separate offshoots of an expanding B cell clone retain or evolve alternative specificities. We compared 3H9, an anti-dsDNA IgG, to 4H8 and 1A11, antibodies produced by hybridomas representing an alternative branch of the 3H9 B cell clone. All three IgG bound chromatin in ELISA and apoptotic cells in confocal microscopy, yet only 3H9 bound dsDNA, as measured by plasmon resonance. Moreover, we demonstrate that despite the unique specificity of 3H9 for dsDNA, all three clone members exhibited indistinguishable binding to chromatin. The binding to chromatin and apoptotic cells was unaffected by N-linked glycosylation in L chain CDR1, a modification that results from a replacement of serine 26 with asparagine in 4H8 and 1A11. These data provide the first evidence that specificity for nucleosome epitopes on apoptotic cells provides the initial positive stimulus for somatic variants that comprise a B cell clone, including those that subsequently acquire specificity for dsDNA. Conversely, selection of autoreactive B cells for binding to apoptotic cells leads to clonal expansion, antibody diversification, and the development of linked sets of anti-nuclear autoantibodies.
PMCID: PMC1812796  PMID: 17084454
Anti-DNA; Autoantibody; Autoimmunity; Apoptosis; B lymphocytes; Somatic Mutations; Systemic Lupus Erythematosus

Results 1-6 (6)