PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Toll-Like Receptor 4 Is Involved in Inflammatory and Joint Destructive Pathways in Collagen-Induced Arthritis in DBA1J Mice 
PLoS ONE  2011;6(8):e23539.
In rheumatoid arthritis, a significant proportion of cytokine and chemokine synthesis is attributed to innate immune mechanisms. TLR4 is a prominent innate receptor since several endogenous ligands known to activate the innate immune system bind to it and may thereby promote joint inflammation. We generated TLR4 deficient DBA1J mice by backcrossing the TLR4 mutation present in C3H/HeJ strain onto the DBA1J strain and investigated the course of collagen-induced arthritis in TLR4 deficient mice in comparison to wild type littermates. The incidence of collagen- induced arthritis was significantly lower in TLR4 deficient compared to wild type mice (59 percent vs. 100 percent). The severity of arthritis was reduced in the TLR4 deficient mice compared to wild type littermates (mean maximum score 2,54 vs. 6,25). Mice deficient for TLR4 were virtually protected from cartilage destruction, and infiltration of inflammatory cells was reduced compared to wt mice. In parallel to the decreased clinical severity, lower anti-CCP antibody concentrations and lower IL-17 concentrations were found in the TLR4 deficient mice. The study further supports the role of TLR4 in the propagation of joint inflammation and destruction. Moreover, since deficiency in TLR4 led to decreased IL-17 and anti-CCP antibody production, the results indicate a link between TLR4 stimulation and the adaptive autoimmune response. This mechanism might be relevant in human rheumatoid arthritis, possibly in response to activating endogenous ligands in the affected joints.
doi:10.1371/journal.pone.0023539
PMCID: PMC3157404  PMID: 21858160
2.  Negative association of the chemokine receptor CCR5 d32 polymorphism with systemic inflammatory response, extra-articular symptoms and joint erosion in rheumatoid arthritis 
Introduction
Chemokines and their receptors control immune cell migration during infections as well as in autoimmune responses. A 32 bp deletion in the gene of the chemokine receptor CCR5 confers protection against HIV infection, but has also been reported to decrease susceptibility to rheumatoid arthritis (RA). The influence of this deletion variant on the clinical course of this autoimmune disease was investigated.
Methods
Genotyping for CCR5d32 was performed by PCR and subsequent electrophoretic fragment length determination. For the clinical analysis, the following extra-articular manifestations of RA were documented by the rheumatologist following the patient: presence of rheumatoid nodules, major organ vasculitis, pulmonary fibrosis, serositis or a Raynaud's syndrome. All documented CRP levels were analyzed retrospectively, and the last available hand and feet radiographs were analyzed with regards to the presence or absence of erosive disease.
Results
Analysis of the CCR5 polymorphism in 503 RA patients and in 459 age-matched healthy controls revealed a significantly decreased disease susceptibility for carriers of the CCR5d32 deletion (Odds ratio 0.67, P = 0.0437). Within the RA patient cohort, CCR5d32 was significantly less frequent in patients with extra-articular manifestations compared with those with limited, articular disease (13.2% versus 22.8%, P = 0.0374). In addition, the deletion was associated with significantly lower average CRP levels over time (median 8.85 vs. median 14.1, P = 0.0041) and had a protective effect against the development of erosive disease (OR = 0.40, P = 0.0047). Intriguingly, homozygosity for the RA associated DNASE2 -1066 G allele had an additive effect on the disease susceptibility conferred by the wt allele of CCR5 (OR = 2.24, P = 0.0051 for carrier of both RA associated alleles)
Conclusions
The presence of CCR5d32 significantly influenced disease susceptibility to and clinical course of RA in a German study population. The protective effect of this deletion, which has been described to lead to a decreased receptor expression in heterozygous patients, underlines the importance of chemokines in the pathogenesis of RA.
doi:10.1186/ar2733
PMCID: PMC2714147  PMID: 19538721
3.  Association of PTPN22 1858 single-nucleotide polymorphism with rheumatoid arthritis in a German cohort: higher frequency of the risk allele in male compared to female patients 
The functional single-nucleotide polymorphism (SNP) of the gene PTPN22 is a susceptibility locus for rheumatoid arthritis (RA). The study presented here describes the association of the PTPN22 1858T allele with RA in a German patient cohort; 390 patients with RA and 349 controls were enrolled in the study. For 123 patients, clinical and radiographic documentation over 6 years was available from the onset of disease. Genotyping of the PTPN22 1858 SNP was performed using an restriction fragment length polymorphism PCR-based genotyping assay. The odds ratio to develop RA was 2.57 for carriers of the PTPN22 1858T allele (95% confidence interval (CI) 1.85–3.58, p < 0.001), and 5.58 for homozygotes (95% CI 1.85–16.79). The PTPN22 1858T allele was significantly associated not only with rheumatoid factor (RF) and anti-cyclic citrullinated peptide (CCP) positive RA, but also with RF and anti-CCP negative disease. The frequency of the PTPN22 1858T allele was increased disproportionately in male patients (53.8% compared to 33.0% in female patients, p < 0.001), and the resulting odds ratio for male carriers was increased to 4.47 (95% CI 2.5–8.0, p < 0.001). Moreover, within the male patient population, the rare allele was significantly associated with the HLA-DRB1 shared epitope (p = 0.01). No significant differences in disease activity or Larsen scores were detected. The results provide further evidence that the PTPN22 1858T allele is associated with RA irrespective of autoantibody production. The increased frequency of the risk allele in male patients and its association with the shared epitope indicate that the genetic contribution to disease pathogenesis might be more prominent in men.
doi:10.1186/ar1945
PMCID: PMC1526616  PMID: 16635271
4.  B lymphocytopenia in rheumatoid arthritis is associated with the DRB1 shared epitope and increased acute phase response 
Arthritis Research  2002;4(4):R1.
The influence of HLA DRB1 alleles on B-cell homeostasis was analyzed in 164 patients with rheumatoid arthritis (RA). The percentages of CD19+ B lymphocytes determined in the peripheral circulation of 94 retrospectively recruited RA patients followed a bimodal distribution. Two frequency peaks (B-celllow patients and B-cellhigh patients) were separated by the population median of a B-cell frequency of 8.5% of all lymphocytes. Human leucocyte antigen genotyping revealed that the B-celllow patients were more frequently positive for the RA-associated HLA DRB1 shared epitope (SE) than were B-cellhigh patients. Accordingly, SE-positive patients had lower CD19 percentages in the rank-sum analysis when compared with SE-negative patients, and were markedly B lymphocytopenic when compared with a healthy control group. To confirm the differential frequencies of CD19+ B cells, absolute numbers in peripheral blood were determined prospectively in a cohort of 70 RA patients with recent onset disease. SE-positive patients were found to have lower absolute numbers of circulating CD19+ B cells. B-cell counts below the mean of the study population were associated with higher acute phase response and with increased levels of rheumatoid factor IgA. No correlation between absolute numbers of circulating B cells and radiographic progression of joint destruction was seen. The influence of immunogenetic parameters on B-cell homeostasis in RA reported here has not been described previously. The clinical relevance of B lymphocytopenia in SE-positive RA will be further investigated in longitudinal studies.
doi:10.1186/ar420
PMCID: PMC125293  PMID: 12106500
antibodies; B lymphocytes; major histocompatibility complex; rheumatoid arthritis
5.  Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors 
Nature Communications  2012;3:1329-.
Activation of the NLRP3 inflammasome enables monocytes and macrophages to release high levels of interleukin-1β during inflammatory responses. Concentrations of extracellular calcium can increase at sites of infection, inflammation or cell activation. Here we show that increased extracellular calcium activates the NLRP3 inflammasome via stimulation of G protein-coupled calcium sensing receptors. Activation is mediated by signalling through the calcium-sensing receptor and GPRC6A via the phosphatidyl inositol/Ca2+ pathway. The resulting increase in the intracellular calcium concentration triggers inflammasome assembly and Caspase-1 activation. We identified necrotic cells as one source for excess extracellular calcium triggering this activation. In vivo, increased calcium concentrations can amplify the inflammatory response in the mouse model of carrageenan-induced footpad swelling, and this effect was inhibited in GPRC6A−/− mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation.
Levels of extracellular calcium can increase at sites of infection and inflammation; however, the physiological significance of this has been unclear. This work shows that extracellular calcium acts as a danger signal, triggering the NLRP3 inflammasome via two G protein-coupled receptors.
doi:10.1038/ncomms2339
PMCID: PMC3535422  PMID: 23271661

Results 1-5 (5)