Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("petrol, Peter")
1.  1,25-Dihydroxyvitamin D3 prevents bone loss of the secondary spongiosa in arthritic rats by an increase of bone formation and mineralization and inhibition of bone resorption 
Active vitamin D metabolites have been shown to have protective effects in experimental arthritis especially when used as preventive treatment. However, because the direct effects of 1,25-dihydroxyvitamin D3 (1,25(OH) 2D3) on bone formation and resorption are very complex, the net effect of 1,25(OH)2D3 on histomorphometric parameters of bone turnover and mineralisation should be investigated. Therefore, we examined the influence of 1,25(OH)2D3 therapy on arthritis-induced alterations of periarticular and axial bone as well as disease activity, inflammation and joint destruction in antigen-induced arthritis (AIA) of the rat.
AIA was induced in 20 eight-week-old female Wistar rats. 10 rats without arthritis were used as healthy controls. AIA rats received 1,25(OH)2D3 (0.2 μg/kg/day, i.p., n = 10) or vehicle (n = 10) at regular intervals for 28 consecutive days beginning 3 days before arthritis induction. Bone structure of the secondary spongiosa of the periarticular and axial bone was analyzed using histomorphometry. Parameters of mineralization were investigated using tetracycline labelling. Clinical disease activity, inflammation and joint destruction were measured by joint swelling and histological investigation, respectively.
AIA led to significant periarticular bone loss. 1,25(OH)2D3 treatment resulted in a highly significant increase in trabecular bone volume and bone formation rate in comparison to both vehicle-treated AIA and healthy controls at periarticular (p < 0.01 and p < 0.001, respectively) and axial bone (p < 0.001 and p < 0.001, respectively). In addition, bone resorption was reduced by 1,25(OH)2D3 at the axial bone (p < 0.05 vs. vehicle-treated AIA). Joint swelling as well as histological signs of inflammation and joint destruction were not influenced by 1,25(OH)2D3.
The results of the study indicate a marked osteoanabolic effect of 1,25(OH)2D3 presumably due to a substantial increase in mineralization. Thus, 1,25(OH)2D3 may be an effective osteoanabolic treatment principle to antagonize the inflammation-associated suppression of bone formation in rheumatoid arthritis.
PMCID: PMC4210592  PMID: 25315028
Arthritis models; Bone; Vitamin D hormone
2.  Human Papillomavirus Mutational Insertion: Specific Marker of Circulating Tumor DNA in Cervical Cancer Patients 
PLoS ONE  2012;7(8):e43393.
In most cases of cervical cancers, HPV DNA is integrated into the genome of carcinoma cells. This mutational insertion constitutes a highly specific molecular marker of tumor DNA for every patient. Circulating tumor DNA (ctDNA) is an emerging marker of tumor dynamics which detection requires specific molecular motif. To determine whether the sequence of the cell-viral junction could be used in clinical practice as a specific marker of ctDNA, we analyzed a series of cervical cancer patient serums.
Methods and Findings
Serum specimens of 16 patients diagnosed with HPV16/18-associated cervical cancer, and for which the viral integration locus had been previously localized, were analyzed. Sequential serum specimens, taken at different times during the course of the disease, were also available for two of these cases. ctDNA was found in 11 out of 13 patients with tumor size greater than 20 mm at diagnosis, and analysis of sequential serum specimens showed that ctDNA concentration in patients serum was related to tumor dynamics.
We report that HPV mutational insertion constitutes a highly specific molecular marker of ctDNA in HPV-associated tumor patients. Using this original approach, ctDNA was detected in most cervical cancer patients over stage I and ctDNA concentration was found to reflect tumor burden. In addition to its potential prognostic and predictive value, HPV mutation insertion is likely to constitute a new molecular surrogate of minimal residual disease and of subclinical relapse in HPV-associated tumor. This is of major importance in the perspective of specific anti-HPV therapy.
PMCID: PMC3427328  PMID: 22937045
3.  Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy 
Radiotherapy and Oncology  2012;103(1):113-122.
The GYN GEC-ESTRO working group issued three parts of recommendations and highlighted the pivotal role of MRI for the successful implementation of 3D image-based cervical cancer brachytherapy (BT). The main advantage of MRI as an imaging modality is its superior soft tissue depiction quality. To exploit the full potential of MRI for the better ability of the radiation oncologist to make the appropriate choice for the BT application technique and to accurately define the target volumes and the organs at risk, certain MR imaging criteria have to be fulfilled. Technical requirements, patient preparation, as well as image acquisition protocols have to be tailored to the needs of 3D image-based BT. The present recommendation is focused on the general principles of MR imaging for 3D image-based BT.
Methods and parameters have been developed and progressively validated from clinical experience from different institutions (IGR, Universities of Vienna, Leuven, Aarhus and Ljubljana) and successfully applied during expert meetings, contouring workshops, as well as within clinical and interobserver studies.
It is useful to perform pelvic MRI scanning prior to radiotherapy (“Pre-RT-MRI examination”) and at the time of BT (“BT MRI examination”) with one MR imager. Both low and high-field imagers, as well as both open and close magnet configurations conform to the requirements of 3D image-based cervical cancer BT. Multiplanar (transversal, sagittal, coronal and oblique image orientation) T2-weighted images obtained with pelvic surface coils are considered as the golden standard for visualisation of the tumour and the critical organs. The use of complementary MRI sequences (e.g. contrast-enhanced T1-weighted or 3D isotropic MRI sequences) is optional. Patient preparation has to be adapted to the needs of BT intervention and MR imaging. It is recommended to visualise and interpret the MR images on dedicated DICOM-viewer workstations, which should also assist the contouring procedure. Choice of imaging parameters and BT equipment is made after taking into account aspects of interaction between imaging and applicator reconstruction, as well as those between imaging, geometry and dose calculation.
In a prospective clinical context, to implement 3D image-based cervical cancer brachytherapy and to take advantage of its full potential, it is essential to successfully meet the MR imaging criteria described in the present recommendations of the GYN GEC-ESTRO working group.
PMCID: PMC3336085  PMID: 22296748
Recommendations; MRI; Image based adaptive cervix cancer brachytherapy
4.  Outcome in Advanced Ovarian Cancer following an Appropriate and Comprehensive Effort at Upfront Cytoreduction: A Twenty-Year Experience in a Single Cancer Institute 
Objectives. The purpose of this retrospective evaluation of advanced-stage ovarian cancer patients was to compare outcome with published findings from other centers and to discuss future options for the management of advanced ovarian carcinoma patients. Methods. A retrospective series of 340 patients with a mean age of 58 years (range: 17–88) treated for FIGO stage III and IV ovarian cancer between January 1985 and January 2005 was reviewed. All patients had primary cytoreductive surgery, without extensive bowel, peritoneal, or systematic lymph node resection, thereby allowing initiation of chemotherapy without delay. Chemotherapy consisted of cisplatin-based chemotherapy in combination with alkylating agents before 2000, whereas carboplatin and paclitaxel regimes were generally used after 1999-2000. Overall survival and disease-free survival were analyzed by the Kaplan-Meier method and the log-rank test. Results. With a mean followup of 101 months (range: 5 to 203), 280 events (recurrence or death) were observed and 245 patients (72%) had died. The mortality and morbidity related to surgery were low. The main prognostic factor for overall survival was postoperative residual disease (P < .0002), while the main prognostic factor for disease-free survival was histological tumor type (P < .0007). Multivariate analysis identified three significant risk factors: optimal surgery (RR = 2.2 for suboptimal surgery), menopausal status (RR = 1.47 for postmenopausal women), and presence of a taxane in the chemotherapy combination (RR = 0.72). Conclusion. These results confirm that optimal surgery defined by an appropriate and comprehensive effort at upfront cytoreduction limits morbidity related to the surgical procedure and allows initiation of chemotherapy without any negative impact on survival. The impact of neoadjuvant chemotherapy to improve resectability while lowering the morbidity of the surgical procedure is discussed.
PMCID: PMC3265260  PMID: 22312486
5.  Pre-operative Concomitant Radio-chemotherapy in Bulky Carcinoma of the Cervix: A Single Institution Study 
Clinical Medicine. Oncology  2008;2:227-236.
To evaluate the treatment results of patients (pts) with FIGO stage IB2, IIA, IIB cervical carcinoma (CC) treated with pre-operative radio-chemotherapy, followed by extended radical hysterectomy.
Retrospective study of 148 women treated to the Institut Curie for operable FIGO Stage IB2 to IIB, biopsy proved CC. Among them, 70 pts, median age 46 years, were treated using the same regimen associating primary radio-cisplatinum based chemotherapy, intracavitary LDR brachytherapy, followed by extended radical hysterectomy. Kaplan-Meier estimates were used to draw survival curves. Comparisons of survival distribution were assessed by the log-rank test.
Complete histological local-regional response was obtained in 56% of the pts (n = 39). Residual macroscopic or microscopic disease in the cervix was observed in 28 pts (40%). All but one had in-situ microscopic residual CC. Lateral residual disease in the parametria was also present in 9 pts, all with residual CC. Pelvic lymph nodes were free from microscopic disease in 56 pts (80%). Eight of 55 (11%) radiological N0 patients had microscopic nodal involvement, as compared to 6/15 (40%) radiological N1 (p = 0.03). Seventeen pts (25%) had residual cervix disease but negative nodes. After median follow-up of 40 months (range, 8–141), 38/70 patients (54.1%) are still alive and free of disease, 6 (8.6%) alive with disease, and 11 (15.8%) patients were lost for follow-up but free of disease.
In conclusion
The treatment of locally advanced CC needs a new multidisciplinary diagnostic and treatment approach using new therapeutic arms to improve the survival and treatment tolerance among women presenting this disease.
PMCID: PMC3161687  PMID: 21892284
cervix cancer; radiotherapy; chemotherapy; brachytherapy; treatment; radical hysterectomy
6.  Attenuation of murine antigen-induced arthritis by treatment with a decoy oligodeoxynucleotide inhibiting signal transducer and activator of transcription-1 (STAT-1) 
The transcription factor STAT-1 (signal transducer and activator of transcription-1) plays a pivotal role in the expression of inflammatory gene products involved in the pathogenesis of arthritis such as various cytokines and the CD40/CD40 ligand (CD40/CD40L) receptor-ligand dyad. The therapeutic efficacy of a synthetic decoy oligodeoxynucleotide (ODN) binding and neutralizing STAT-1 was tested in murine antigen-induced arthritis (AIA) as a model for human rheumatoid arthritis (RA). The STAT-1 decoy ODN was injected intra-articularly in methylated bovine serum albumin (mBSA)-immunized mice 4 h before arthritis induction. Arthritis was evaluated by joint swelling measurement and histological evaluation and compared to treatment with mutant control ODN. Serum levels of pro-inflammatory cytokines, mBSA-specific antibodies and auto-antibodies against matrix constituents were assessed by enzyme-linked immunosorbent assay (ELISA). The transcription factor neutralizing efficacy of the STAT-1 decoy ODN was verified in vitro in cultured synoviocytes and macrophages. Single administration of STAT-1 decoy ODN dose-dependently suppressed joint swelling and histological signs of acute and chronic arthritis. Delayed-type hypersensitivity (DTH) reaction, serum levels of interleukin-6 (IL-6) and anti-proteoglycan IgG titres were significantly reduced in STAT-1 decoy ODN-treated mice, whereas mBSA, collagen type I and type II specific immunoglobulins were not significantly affected. Intra-articular administration of an anti-CD40L (anti-CD154) antibody was similarly effective. Electrophoretic mobility shift analysis (EMSA) of nuclear extracts from synoviocytes incubated with the STAT-1 decoy ODN in vitro revealed an inhibitory effect on STAT-1. Furthermore, the STAT-1 decoy ODN inhibited the expression of CD40 mRNA in stimulated macrophages. The beneficial effects of the STAT-1 decoy ODN in experimental arthritis presumably mediated in part by affecting CD40 signalling in macrophages may provide the basis for a novel treatment of human RA.
PMCID: PMC1526583  PMID: 16507120
7.  Intra-articular injections of high-molecular-weight hyaluronic acid have biphasic effects on joint inflammation and destruction in rat antigen-induced arthritis 
Arthritis Research & Therapy  2005;7(3):R677-R686.
To assess the potential use of hyaluronic acid (HA) as adjuvant therapy in rheumatoid arthritis, the anti-inflammatory and chondroprotective effects of HA were analysed in experimental rat antigen-induced arthritis (AIA). Lewis rats with AIA were subjected to short-term (days 1 and 8, n = 10) or long-term (days 1, 8, 15 and 22, n = 10) intra-articular treatment with microbially manufactured, high-molecular-weight HA (molecular weight, 1.7 × 106 Da; 0.5 mg/dose). In both tests, 10 buffer-treated AIA rats served as arthritic controls and six healthy animals served as normal controls. Arthritis was monitored by weekly assessment of joint swelling and histological evaluation in the short-term test (day 8) and in the long-term test (day 29). Safranin O staining was employed to detect proteoglycan loss from the epiphyseal growth plate and the articular cartilage of the arthritic knee joint. Serum levels of IL-6, tumour necrosis factor alpha and glycosaminoglycans were measured by ELISA/kit systems (days 8 and 29). HA treatment did not significantly influence AIA in the short-term test (days 1 and 8) but did suppress early chronic AIA (day 15, P < 0.05); however, HA treatment tended to aggravate chronic AIA in the long-term test (day 29). HA completely prevented proteoglycan loss from the epiphyseal growth plate and articular cartilage on day 8, but induced proteoglycan loss from the epiphyseal growth plate on day 29. Similarly, HA inhibited the histological signs of acute inflammation and cartilage damage in the short-term test, but augmented acute and chronic inflammation as well as cartilage damage in the long-term test. Serum levels of IL-6, tumour necrosis factor alpha, and glycosaminoglycans were not influenced by HA. Local therapeutic effects of HA in AIA are clearly biphasic, with inhibition of inflammation and cartilage damage in the early chronic phase but with promotion of joint swelling, inflammation and cartilage damage in the late chronic phase.
PMCID: PMC1174961  PMID: 15899053
8.  The role of regulatory T cells in antigen-induced arthritis: aggravation of arthritis after depletion and amelioration after transfer of CD4+CD25+ T cells 
Arthritis Research & Therapy  2005;7(2):R291-R301.
It is now generally accepted that CD4+CD25+ Treg cells play a major role in the prevention of autoimmunity and pathological immune responses. Their involvement in the pathogenesis of chronic arthritis is controversial, however, and so we examined their role in experimental antigen-induced arthritis in mice. Depletion of CD25-expressing cells in immunized animals before arthritis induction led to increased cellular and humoral immune responses to the inducing antigen (methylated bovine serum albumin; mBSA) and autoantigens, and to an exacerbation of arthritis, as indicated by clinical (knee joint swelling) and histological scores. Transfer of CD4+CD25+ cells into immunized mice at the time of induction of antigen-induced arthritis decreased the severity of disease but was not able to cure established arthritis. No significant changes in mBSA-specific immune responses were detected. In vivo migration studies showed a preferential accumulation of CD4+CD25+ cells in the inflamed joint as compared with CD4+CD25- cells. These data imply a significant role for CD4+CD25+ Treg cells in the control of chronic arthritis. However, transferred Treg cells appear to be unable to counteract established acute or chronic inflammation. This is of considerable importance for the timing of Treg cell transfer in potential therapeutic applications.
PMCID: PMC1065322  PMID: 15743476
arthritis; regulatory T cells
9.  Proteinase-3 as the major autoantigen of c-ANCA is strongly expressed in lung tissue of patients with Wegener's granulomatosis 
Arthritis Research  2002;4(3):220-225.
Proteinase-3 (PR-3) is a neutral serine proteinase present in azurophil granules of human polymorphonuclear leukocytes and serves as the major target antigen of antineutrophil cytoplasmic antibodies with a cytoplasmic staining pattern (c-ANCA) in Wegener's granulomatosis (WG). The WG disease appears as severe vasculitis in different organs (e.g. kidney, nose and lung). Little is known about the expression and distribution of PR-3 in the lung. We found that PR-3 is expressed in normal lung tissue and is upregulated in lung tissue of patients with WG. Interestingly, the parenchymal cells (pneumocytes type I and II) and macrophages, and not the neutrophils, express PR-3 most strongly and may contribute to lung damage in patients with WG via direct interaction with antineutrophil cytoplasmic antobodies (ANCA). These findings suggest that the PR-3 expression in parenchymal cells of lung tissue could be at least one missing link in the etiopathogenesis of pulmonary pathology in ANCA-associated disease.
PMCID: PMC111026  PMID: 12010574
granuloma; in situ hybridization; pneumocytes; proteinase-3; Wegener's granulomatosis
10.  Monoarticular antigen-induced arthritis leads to pronounced bilateral upregulation of the expression of neurokinin 1 and bradykinin 2 receptors in dorsal root ganglion neurons of rats 
Arthritis Research  2000;2(5):424-427.
This study describes the upregulation of neurokinin 1 and bradykinin 2 receptors in dorsal root ganglion (DRG) neurons in the course of antigen-induced arthritis (AIA) in the rat knee. In the acute phase of AIA, which was characterized by pronounced hyperalgesia, there was a substantial bilateral increase in the proportion of lumbar DRG neurons that express neurokinin 1 receptors (activated by substance P) and bradykinin 2 receptors. In the chronic phase the upregulation of bradykinin 2 receptors persisted on the side of inflammation. The increase in the receptor expression is relevant for the generation of acute and chronic inflammatory pain.
Ongoing pain and hyperalgesia (enhanced pain response to stimulation of the tissue) are major symptoms of arthritis. Arthritic pain results from the activation and sensitization of primary afferent nociceptive nerve fibres ('pain fibres') supplying the tissue (peripheral sensitization) and from the activation and sensitization of nociceptive neurons in the central nervous system (central sensitization). After sensitization, nociceptive neurons respond more strongly to mechanical and thermal stimulation of the tissue, and their activation threshold is lowered. The activation and sensitization of primary afferent fibres results from the action of inflammatory mediators such as bradykinin (BK), prostaglandins and others on membrane receptors located on these neurons. BK is a potent pain-producing substance that is contained in inflammatory exudates. Up to 50% of the primary afferent nerve fibres have receptors for BK. When primary afferent nerve fibres are activated they can release neuropeptides such as substance P (SP) and calcitonin gene-related peptide from their sensory endings in the tissue. SP contributes to the inflammatory changes in the innervated tissue (neurogenic inflammation), and it might also support the sensitization of nociceptive nerve fibres by binding to neurokinin 1 (NK1) receptors. NK1 receptors are normally expressed on a small proportion of the primary afferent nerve fibres.
Because the expression of receptors on the primary afferent neurons is essential for the pain-producing action of inflammatory mediators and neuropeptides, we investigated in the present study whether the expression of BK and NK1 receptors on primary afferent neurons is altered during the acute and chronic phases of an antigen-induced arthritis (AIA). AIA resembles in many aspects the inflammatory process of human rheumatoid arthritis. Because peptide receptors are expressed not only in the terminals of the primary afferent units but also in the cell bodies, we removed dorsal root ganglia (DRGs) of both sides from control rats and from rats with the acute or chronic phase of AIA and determined, after short-term culture of the neurons, the proportion of DRG neurons that expressed the receptors in the different phases of AIA. We also characterized the inflammatory process and the nociceptive behaviour of the rats in the course of AIA.
Materials and methods:
In 33 female Lewis rats 10 weeks old, AIA was induced in the right knee joint. First the rats were immunized in two steps with methylated bovine serum albumin (m-BSA) emulsified with Freund's complete adjuvant, and heat-inactivated Bordetella pertussis. After immunization, m-BSA was injected into the right knee joint cavity to induce arthritis. The joint swelling was measured at regular intervals. Nociceptive (pain) responses to mechanical stimulation of the injected and the contralateral knee were monitored in the course of AIA. Groups of rats were killed at different time points after the induction of AIA, and inflammation and destruction in the knee joint were graded by histological examination. The DRGs of both sides were dissected from segments L1–L5 and C1–C7 from arthritic rats, from eight immunized rats without arthritis and from ten normal control rats. Excised DRGs were dissociated into single cells which were cultured for 18 h.
The expression of the receptors was determined by assessment of the binding of SP-gold or BK-gold to the cultured neurons. For this purpose the cells were slightly fixed. Binding of SP-gold or BK-gold was detected by using enhancement with silver and subsequent densitometric analysis of the relative grey values of the neurons. Displacement controls were performed with SP, the specific NK1 receptor agonist [Sar9, Met(O2)11]-SP, BK, the specific BK 1 (B1) receptor agonist D-Arg (Hyp3-Thi5,8-D-Phe7)-BK and the specific BK 2 (B2) receptor agonist (Des-Arg10)-Lys-BK.
The inflammatory process in the injected right knee joint started on the first day after induction of AIA and persisted throughout the observation period of 84 days (Fig. 1). The initial phase of AIA was characterized by strong joint swelling and a predominantly granulocytic infiltration of the synovial membrane and the joint cavity (acute inflammatory changes). In the later phases of AIA (10–84 days after induction of AIA) the joint showed persistent swelling, and signs of chronic arthritic alterations such as infiltration of mononuclear leucocytes, hyperplasia of synovial lining layer (pannus formation) and erosions of cartilage and bone were predominant. The contralateral knee joints appeared normal at all time points. Destruction was observed only in the injected knee but some proteoglycan loss was also noted in the non-injected, contralateral knee. In the acute and initial chronic phases of AIA (1–29 days) the rats showed mechanical hyperalgesia in the inflamed knee (limping, withdrawal response to gentle pressure onto the knee). In the acute phase (up to 9 days) a pain response was also seen when gentle pressure was applied to the contralateral knee.
Figure 2 displays the changes in the receptor expression in the DRG neurons during AIA. The expression of SP–gold-binding sites in lumbar DRG neurons (Fig. 2a) was substantially increased in the acute phase of arthritis. In untreated control rats (n = 5), 7.7 ± 3.8% of the DRG neurons from the right side and 10.0 ± 1.7% of the DRG neurons from the left side showed labelling with SP–gold. The proportion of SP–gold-labelled neurons in immunized animals without knee injection (n = 3) was similar. By contrast, at days 1 (n = 2 rats) and 3 (n = 5 rats) of AIA in the right knee, approximately 50% of the DRG neurons exhibited labelling with SP–gold, and this was seen both on the side of the injected knee and on the opposite side. At day 10 of AIA (n = 3 rats), 26.3 ± 6.1% of the ipsilateral DRG neurons but only 15.7 ± 0.6% of the contralateral neurons exhibited binding of SP–gold. At days 21 (n = 5 rats), 42 (n = 3 rats) and 84 (n = 5 rats) of AIA, the proportion of SP–gold-positive neurons had returned to the control values, although the arthritis, now with signs of chronic inflammation, was still present. Compared with the DRG neurons of the untreated control rats, the increase in the proportion of labelled neurons was significant on both sides in the acute phase (days 1 and 3) and the intermediate phase (day 10) of AIA (Mann–Whitney U-test). The size distribution of the neurons was similar in the DRG neurons of all experimental groups. Under all conditions and at all time points, SP–gold binding was found mainly in small and medium-sized (less than 700 μm2) neurons. In the cervical DRGs the expression of NK1 receptors did not change in the course of AIA. The binding of SP–gold to the neurons was suppressed by the coadministration of the specific NK1 receptor agonist [Sar9, Met(O2)11]–SP in three experiments, showing that SP–gold was bound to NK1 receptors.
The expression of BK–gold-binding sites in the lumbar DRG neurons showed also changes in the course of AIA, but the pattern was different (Fig. 2b). In untreated control rats (n = 5), 42.3 ± 3.1% of the DRG neurons of the right side and 39.6 ± 2.6% of the DRG neurons of the left side showed binding of BK–gold. At days 1 (n = 2 rats) and 3 (n = 5 rats) of AIA, approximately 80% of the DRG neurons on the side of the knee injection (ipsilateral) and approximately 70% on the opposite side were labelled. In comparison with the untreated control group, the increase in the proportion of labelled neurons was significant on both sides. The proportion of labelled neurons in the ipsilateral DRGs remained significantly increased in both the intermediate phase (day 10, n = 3 rats) and chronic phase (days 21, n = 5 rats, and 42, n = 3 rats) of inflammation. At 84 days after the induction of AIA (n = 5 rats), 51.0 ± 12.7% of the neurons showed an expression of BK–gold-binding sites and this was close to the prearthritic values. However, in the contralateral DRG of the same animals the proportion of BK–gold-labelled neurons declined in the intermediate phase (day 10) and chronic phase (days 21–84) of AIA and was not significantly different from the control value. Thus the increase in BK–gold-labelled neurons was persistent on the side where the inflammation had been induced, and transient on the opposite side. The size distribution of the DRG neurons of the different experimental groups was similar. In the cervical DRGs the expression of BK receptors did not change in the course of AIA. In another series of experiments, we determined the subtype(s) of BK receptor(s) that were expressed in DRGs L1–L5 in different experimental groups. In neither untreated control animals (n = 5) nor immunized rats without knee injection (n = 5) nor in rats at 3 days (n = 5) and 42 days (n = 5) of AIA was the binding of BK–gold decreased by the coadministration of BK–gold and the B1 agonist. By contrast, in these experimental groups the binding of BK–gold was suppressed by the coadministration of the B2 agonist. These results show that B2 receptors, but not B1 receptors, were expressed in both normal animals and in animals with AIA.
These results show that in AIA in the rat the expression of SP-binding and BK-binding sites in the perikarya of DRGs L1–L5 is markedly upregulated in the course of knee inflammation. Although the inflammation was induced on one side only, the initial changes in the binding sites were found in the lumbar DRGs of both sides. No upregulation of SP-binding or BK-binding sites was observed in the cervical DRGs. The expression of SP-binding sites was upregulated only in the first days of AIA, that is, in the acute phase, in which the pain responses to mechanical stimulation were most pronounced. By contrast, the upregulation of BK-binding sites on the side of AIA persisted for up to 42 days, that is, in the acute and chronic phase of AIA. Only the B2 receptor, not the B1 receptor, was upregulated. The coincidence of the enhanced expression of NK1 and BK receptors on sensory neurons and the pain behaviour suggests that the upregulation of these receptors is relevant for the generation and maintenance of arthritic pain.
In the acute phase of AIA, approximately 50% of the lumbar DRG neurons showed an expression of SP-binding sites. Because peptide receptors are transported to the periphery, the marked upregulation of SP-binding receptors probably leads to an enhanced density of receptors in the sensory endings of the primary afferent units. This will permit SP to sensitize more neurons under inflammatory conditions than under normal conditions. However, the expression of NK1 receptors was upregulated only in the acute phase of inflammation, suggesting that SP and NK1 receptors are less important for the generation of hyperalgesia in the chronic phase of AIA.
Because BK is one of the most potent algesic compounds, the functional consequence of the upregulation of BK receptors is likely to be of immediate importance for the generation and maintenance of inflammatory pain. The persistence of the upregulation of BK receptors on the side of inflammation suggests that BK receptors should be an interesting target for pain treatment in the acute and chronic phases. Only B2 receptors were identified in normal animals and in rats with AIA. This is surprising because previous pharmacological studies have provided evidence that, during inflammation, B1 receptors can be newly expressed.
Receptor upregulation in the acute phase of AIA was bilateral and almost symmetrical. However, hyperalgesia was much more pronounced on the inflamed side. It is most likely that receptors on the contralateral side were not readily activated because in the absence of gross inflammation the local concentration of the ligands BK and SP was probably quite low. We hypothesize that the bilateral changes in receptor expression are generated at least in part by mechanisms involving the nervous system. Symmetrical segmental changes can be produced only by the symmetrical innervation, involving either the sympathetic nervous system or the primary afferent fibres. Under inflammatory conditions, primary afferent fibres can be antidromically activated bilaterally in the entry zone of afferent fibres in the spinal cord, and it was proposed that this antidromic activation might release neuropeptides and thus contribute to neurogenic inflammation. Because both sympathetic efferent fibres and primary afferent nerve fibres can aggravate inflammatory symptoms, it is also conceivable that they are involved in the regulation of receptor expression in primary afferent neurons. A neurogenic mechanism might also have been responsible for the bilateral degradation of articular cartilage in the present study.
PMCID: PMC17819  PMID: 11056677
antigen-induced arthritis; bradykinin receptor; dorsal root ganglion neurons; neurokinin 1 receptor; pain

Results 1-10 (10)