PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The severity of experimental arthritis is independent of IL-36 receptor signaling 
Introduction
Interleukin (IL)-36 refers to three related IL-1 family cytokines, IL-36α, IL-36β, and IL-36γ, that bind to the IL-36 receptor (IL-36R). IL-36 exerts proinflammatory effects in skin and lung and stimulates T cell responses. In the present study, we examined the expression and function of IL-36R and its ligands in experimental arthritis.
Methods
Collagen-induced arthritis (CIA), antigen-induced arthritis (AIA), and K/BxN serum transfer-induced arthritis were induced according to standard protocols. Messenger RNA levels for IL-36R and its ligands in the joints of mice with CIA were determined by RT-qPCR. Mice with CIA were injected with a blocking monoclonal anti-IL-36R, a blocking anti-IL-1RI, or their isotype-matched control antibodies at the time of arthritis onset. Anti-IL-36R or control antibodies were also injected at the time of AIA induction. Finally, IL-36R-deficient mice were examined in AIA and serum transfer-induced arthritis. The development and severity of arthritis were assessed by clinical and histological scoring.
Results
IL-36R, IL-36Ra and IL-36γ mRNA were detected in the joints of mice with CIA, but their levels did not correlate with arthritis severity. As opposed to anti-IL-1RI antibody treatment, the injection of an anti-IL-36R antibody was devoid of effect on the development and severity of CIA. The severity of joint inflammation and structural damage in AIA was also unaltered by anti-IL-36R antibody treatment. Finally, the severity of AIA and K/BxN serum transfer-induced arthritis was similar in IL-36R-deficient and wild-type mice.
Conclusions
The development and severity of experimental arthritis are independent of IL-36R signaling.
doi:10.1186/ar4192
PMCID: PMC3672771  PMID: 23452551
2.  Disease severity in K/BxN serum transfer-induced arthritis is not affected by IL-33 deficiency 
Introduction
Interleukin (IL)-33 is a cytokine of the IL-1 family, which signals through the ST2 receptor. Previous work suggested implication of the IL-33/ST2 axis in the pathogenesis of human and mouse arthritis. Here, we directly investigated the role of endogenous IL-33 in K/BxN serum transfer-induced arthritis by using IL-33 knockout (KO) mice.
Methods
Arthritis was induced by injection of complete K/BxN serum or purified IgG. Disease severity was monitored by clinical and histological scoring.
Results
K/BxN serum transfer induced pronounced arthritis with similar incidence and severity in IL-33 KO and wild-type (WT) mice. In contrast, disease development was significantly reduced in ST2 KO mice. IL-33 expression in synovial tissue was comparable in arthritic WT and ST2 KO mice, and absent in IL-33 KO mice. Transfer of purified arthritogenic IgG instead of complete K/BxN serum also resulted in similar arthritis severity in IL-33 KO and WT mice, excluding a contribution of IL-33 contained in the serum of donor mice to explain this result. We investigated additional potential confounding factors, including purity of genetic background, but the mechanisms underlying reduced arthritis in ST2 KO mice remained unclear.
Conclusions
The data obtained with IL-33 KO mice indicate that endogenous IL-33 is not required for the development of joint inflammation in K/BxN serum transfer-induced arthritis. On the contrary, arthritis severity was reduced in ST2 KO mice. This observation might relate to IL-33 independent effects of ST2, and/or reveal the existence of confounding variables affecting the severity of joint inflammation in these KO strains.
doi:10.1186/ar4143
PMCID: PMC3672723  PMID: 23324173
3.  Magnetically retainable microparticles for drug delivery to the joint: efficacy studies in an antigen-induced arthritis model in mice 
Introduction
Conventional corticosteroid suspensions for the intra-articular treatment of arthritis suffer from limitations such as crystal formation or rapid clearance from the joint. The purpose of this study was to investigate an innovative alternative consisting of corticosteroid encapsulation into magnetically retainable microparticles.
Methods
Microparticles (1 or 10 μm) containing both superparamagnetic iron oxide nanoparticles (SPIONs) and dexamethasone 21-acetate (DXM) were prepared. In a preliminary study, we compared the persistence of microparticles of both sizes in the joint. A second study evaluated the influence of a subcutaneously implanted magnet near the knee on the retention of magnetic microparticles in the joint by in vivo imaging. Finally, the efficacy of 10-μm microparticles was investigated using a model of antigen-induced arthritis (AIA) in mice. Phosphate-buffered saline, DXM suspension, SPION suspension, blank microparticles and microparticles containing only SPIONs were used as controls. Arthritis severity was assessed using 99mTc accumulation and histological scoring.
Results
Due to their capacity of encapsulating more corticosteroid and their increased joint retention, the 10-μm microparticles were more suitable vectors than the 1-μm microparticles for corticosteroid delivery to the joint. The presence of a magnet resulted in higher magnetic retention in the joint, as demonstrated by a higher fluorescence signal. The therapeutic efficacy in AIA of 10-μm microparticles containing DXM and SPIONs was similar to that of the DXM suspension, proving that the bioactive agent is released. Moreover, the anti-inflammatory effect of DXM-containing microparticles was more important than that of blank microparticles or microparticles containing only SPIONs. The presence of a magnet did not induce a greater inflammatory reaction.
Conclusions
This study confirms the effectiveness of an innovative approach of using magnetically retainable microparticles as intra-articular drug delivery systems. A major advantage comes from a versatile polymer matrix, which allows the encapsulation of many classes of therapeutic agents (for example, p38 mitogen-activated protein kinase inhibitors), which may reduce systemic side effects.
doi:10.1186/ar2701
PMCID: PMC2714118  PMID: 19454011
4.  Phosphate is a specific signal for ATDC5 chondrocyte maturation and apoptosis-associated mineralization: possible implication of apoptosis in the regulation of endochondral ossification 
During endochondral ossification, regulation of chondrocyte maturation governs the growth of the cartilage plate. The role of inorganic phosphate (Pi), whose levels strongly increase in the hypertrophic zone of the growth plate, on chondrocyte maturation has not yet been deciphered. Using the chondrogenic ATDC5 cells, we investigated the effects of Pi on cell maturation and on mineralization of the extracellular matrix. Pi induces matrix mineralization identical to that observed in growth plate cartilage and increases expression of the hypertrophic marker, collagen X. When calcium concentration is slightly increased (like in cartilage growth plate), Pi also stimulates apoptosis of differentiated ATDC5 cells, with a decrease in Bcl-2/Bax mRNA ratio, DNA fragmentation, characteristic morphological features and caspase-3 activation. All these effects are dependent on Pi entry into cells through sodium-dependent transporters. Finally, inhibition of apoptosis with ZVAD-fmk reduces Pi-induced mineralization. These findings suggest that Pi regulates chondrocyte maturation and apoptosis, which, in turn, controls skeletal development.
PMCID: PMC2071932  PMID: 12929932
Animals; Apoptosis; drug effects; Calcification, Physiologic; drug effects; Caspases; metabolism; Cell Differentiation; drug effects; Cell Line, Tumor; Chondrocytes; cytology; drug effects; enzymology; metabolism; Mice; Phosphates; pharmacology; RNA, Messenger; genetics; metabolism; Signal Transduction; drug effects
5.  Expression and function of junctional adhesion molecule-C in human and experimental arthritis 
Junctional adhesion molecule-C (JAM-C) is an adhesion molecule involved in transendothelial migration of leukocytes. In this study, we examined JAM-C expression in the synovium and investigated the role of this molecule in two experimental mouse models of arthritis. JAM-C expression was investigated by reverse transcriptase-polymerase chain reaction and immunohistochemistry. The effects of a monoclonal anti-JAM-C antibody were assessed in antigen-induced arthritis (AIA) and K/BxN serum transfer-induced arthritis. JAM-C was expressed by synovial fibroblasts in the lining layer and associated with vessels in the sublining layer in human and mouse arthritic synovial tissue. In human tissue, JAM-C expression was increased in rheumatoid arthritis (RA) as compared to osteoarthritis synovial samples (12.7 ± 1.3 arbitrary units in RA versus 3.3 ± 1.1 in OA; p < 0.05). Treatment of mice with a monoclonal anti-JAM-C antibody decreased the severity of AIA. Neutrophil infiltration into inflamed joints was selectively reduced as compared to T-lymphocyte and macrophage infiltration (0.8 ± 0.3 arbitrary units in anti-JAM-C-treated versus 2.3 ± 0.6 in isotype-matched control antibody-treated mice; p < 0.05). Circulating levels of the acute-phase protein serum amyloid A as well as antigen-specific and concanavalin A-induced spleen T-cell responses were significantly decreased in anti-JAM-C antibody-treated mice. In the serum transfer-induced arthritis model, treatment with the anti-JAM-C antibody delayed the onset of arthritis. JAM-C is highly expressed by synovial fibroblasts in RA. Treatment of mice with an anti-JAM-C antibody significantly reduced the severity of AIA and delayed the onset of serum transfer-induced arthritis, suggesting a role for JAM-C in the pathogenesis of arthritis.
doi:10.1186/ar2223
PMCID: PMC2206366  PMID: 17612407
6.  The role of leptin in innate and adaptive immune responses 
Leptin is produced primarily by adipocytes and functions in a feedback loop regulating body weight. Leptin deficiency results in severe obesity and a variety of endocrine abnormalities in animals and humans. Several studies indicated that leptin plays an important role in immune responses. It exerts protective anti-inflammatory effects in models of acute inflammation and during activation of innate immune responses. In contrast, leptin stimulates T lymphocyte responses, thus having rather a proinflammatory role in experimental models of autoimmune diseases. Clinical studies have so far yielded inconsistent results, suggesting a rather complex role for leptin in immune-mediated inflammatory conditions in humans.
doi:10.1186/ar2004
PMCID: PMC1779438  PMID: 16879738
7.  The new IL-1 family member IL-1F8 stimulates production of inflammatory mediators by synovial fibroblasts and articular chondrocytes 
Six novel members of the IL-1 family of cytokines were recently identified, primarily through the use of DNA database searches for IL-1 homologues, and were named IL-1F5 to IL-1F10. In the present study, we investigated the effect of IL-1F8 on primary human joint cells, and examined the expression of the new IL-1 family members in human and mouse joints. Human synovial fibroblasts (hSFs) and human articular chondrocytes (hACs) expressed the IL-1F8 receptor (IL-1Rrp2) and produced pro-inflammatory mediators in response to recombinant IL-1F8. IL-1F8 mRNA expression was increased in hSFs upon stimulation with proinflammatory cytokines, whereas in hACs IL-1F8 mRNA expression was constitutive. However, IL-1F8 protein was undetectable in hSF and hAC culture supernatants. Furthermore, although IL-1β protein levels were increased in inflamed human and mouse joint tissue, IL-1F8 protein levels were not. IL-1F8 levels in synovial fluids were similar to or lower than those in matched serum samples, suggesting that the joint itself is not a major source of IL-1F8. Serum levels of IL-1F8 were similar in healthy donors, and patients with rheumatoid arthritis, osteoarthritis and septic shock, and did not correlate with inflammatory status. Interestingly however, we observed high IL-1F8 levels in several serum samples in all groups. In conclusion, IL-1F8 exerts proinflammatory effects in primary human joint cells. Joint and serum IL-1F8 protein levels did not correlate with inflammation, but they were high in some human serum samples tested, including samples from patients with rheumatoid arthritis. It remains to be determined whether circulating IL-1F8 can contribute to joint inflammation in rheumatoid arthritis.
doi:10.1186/ar1946
PMCID: PMC1526623  PMID: 16646978
8.  Delayed resolution of acute inflammation during zymosan-induced arthritis in leptin-deficient mice 
Arthritis Research & Therapy  2004;6(3):R256-R263.
The severity of antigen-induced arthritis (AIA) is decreased in leptin-deficient ob/ob mice. However, joint inflammation in AIA depends on the immune response, which is impaired in ob/ob mice. In the present study we investigated the effects of leptin deficiency on zymosan-induced arthritis (ZIA), which is independent of adaptive immunity. Arthritis was induced by injection of zymosan into the knee joint. Joint swelling was similar after 6 and 24 hours in ob/ob and control mice. However, it remained elevated in ob/ob animals on day 3 whereas values normalized in controls. Histology revealed similar articular lesions in all animals on day 3, but on days 14 and 21 arthritis tended to be more severe in ob/ob mice. The acute phase response, reflected by circulating levels of IL-6 and serum amyloid A, was also more pronounced in ob/ob mice, although corticosterone was significantly elevated in these animals. Similar results were obtained in leptin receptor-deficient db/db mice. Thus, in contrast to AIA, ZIA is not impaired in leptin-deficient animals. On the contrary, resolution of acute inflammation appears to be delayed in the absence of leptin or leptin signalling, suggesting that chronic leptin deficiency interferes with adequate control of the inflammatory response in ZIA.
doi:10.1186/ar1174
PMCID: PMC416449  PMID: 15142272
acute phase response; arthritis; inflammation; interleukin-6; leptin
9.  The active metabolite of leflunomide, A77 1726, increases the production of IL-1 receptor antagonist in human synovial fibroblasts and articular chondrocytes 
Arthritis Research & Therapy  2004;6(3):R181-R189.
Leflunomide is an immunomodulatory agent used for the treatment of rheumatoid arthritis. In this study, we investigated the effect of A77 1726 – the active metabolite of leflunomide – on the production of IL-1 receptor antagonist (IL-1Ra) by human synovial fibroblasts and articular chondrocytes. Cells were incubated with A77 1726 alone or in combination with proinflammatory cytokines. IL-1Ra production was determined by ELISA. A77 1726 alone had no effect, but in the presence of IL-1β or tumour necrosis factor-α it markedly enhanced the secretion of IL-1Ra in synovial fibroblasts and chondrocytes. The effect of A77 1726 was greatest at 100 μmol/l. In synovial fibroblasts and de-differentiated chondrocytes, A77 1726 also increased IL-1β-induced IL-1Ra production in cell lysates. Freshly isolated chondrocytes contained no significant amounts of intracellular IL-1Ra. A77 1726 is a known inhibitor of pyrimidine synthesis and cyclo-oxygenase (COX)-2 activity. Addition of exogenous uridine did not significantly modify the effect of A77 1726 on IL-1Ra production, suggesting that it was not mediated by inhibition of pyrimidine synthesis. Indomethacin increased IL-1β-induced IL-1Ra secretion in synovial fibroblasts and de-differentiated chondrocytes, suggesting that inhibition of COX-2 may indeed enhance IL-1β-induced IL-1Ra production. However, the stimulatory effect of indomethacin was consistently less effective than that of A77 1726. A77 1726 increases IL-1Ra production by synovial fibroblasts and chondrocytes in the presence of proinflammatory cytokines, and thus it may possess chondroprotective effects. The effect of A77 1726 may be partially mediated by inhibition of COX-2, but other mechanisms likely concur to stimulate IL-1Ra production.
doi:10.1186/ar1157
PMCID: PMC416438  PMID: 15142263
articular cartilage; IL-1 receptor antagonist; leflunomide; synovium
10.  Production of interleukin-1 receptor antagonist by human articular chondrocytes 
Arthritis Research  2002;4(3):226-231.
Interleukin-1 receptor antagonist (IL-1Ra) is a natural IL-1 inhibitor possessing anti-inflammatory properties. IL-1Ra is produced as different isoforms, one secreted (sIL-1Ra) and three intracellular (icIL-1Ra1, icIL-1Ra2 and icIL-1Ra3), derived from the same gene. We examined the production of IL-1Ra species by cultured human articular chondrocytes in response to various cytokines. The levels of IL-1Ra were undetectable in culture supernatants of untreated cells, but were significantly increased by IL-1β. Cell lysates contained very low levels of IL-1Ra, even in response to IL-1β, suggesting that chondrocytes produce predominantly sIL-1Ra. IL-6, which had no effect on its own, enhanced the effect of IL-1β, while dexamethasone prevented the response. We observed by RT-PCR that IL-1β and IL-6 induced primarily the production of sIL-1Ra mRNA. Furthermore, IL-1β alone or combined with IL-6 increased the levels of nascent unspliced sIL-1Ra mRNA, suggesting that sIL-1Ra expression is regulated at the transcriptional level. Reporter gene assays in immortalized chondrocytes, C-20/A4, consistently showed increased sIL-1Ra promoter activity in response to IL-1β and IL-6. In conclusion, human articular chondrocytes produce sIL-1Ra in response to IL-1β and IL-6. The production of sIL-1Ra by chondrocytes may have a protective effect against articular inflammatory and catabolic responses.
PMCID: PMC111027  PMID: 12010575
cytokines; glucocorticoids; human articular chondrocytes; IL-1 receptor antagonist

Results 1-10 (10)