PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Classification Criteria for Systemic Sclerosis: An ACR-EULAR Collaborative Initiative 
Arthritis and rheumatism  2013;65(11):2737-2747.
Background
The 1980 classification criteria for systemic sclerosis (SSc) lack sensitivity in early SSc and limited cutaneous SSc. A joint ACR-EULAR committee was established to develop new classification criteria for SSc.
Methods
Using consensus methods, 23 candidate items were arranged in a multi-criteria additive point system with a threshold to classify cases as SSc. The classification system was reduced by clustering items, and simplifying weights. The system was tested by: a) determining specificity and sensitivity in SSc cases and controls with scleroderma-like disorders; b) validating against the combined view of a group of experts on a set of cases with or without SSc.
Results
Skin thickening of the fingers extending proximal to the MCPs is sufficient to be classified as SSc, if that is not present, seven additive items apply with varying weights for each: skin thickening of the fingers, finger tip lesions, telangiectasia, abnormal nailfold capillaries, interstitial lung disease or pulmonary arterial hypertension, Raynaud's phenomenon, and SSc-related autoantibodies. Sensitivity and specificity in the validation sample were 0.91 and 0.92 for the new classification criteria and 0.75 and 0.72 for the 1980 ARA classification criteria. All selected cases were classified in accordance with consensus-based expert opinion. All cases classified as SSc by the 1980 ARA criteria were classified with the new criteria, and several additional cases were now considered to be SSc.
Conclusion
The ACR-EULAR classification criteria for SSc performed better than the 1980 ARA Criteria for SSc and should allow for more patients to be classified correctly as SSc.
doi:10.1002/art.38098
PMCID: PMC3930146  PMID: 24122180
Systemic Sclerosis; Scleroderma; Classification Criteria; Conjoint Analysis; Multi Criteria Additive Point System; Validation; ACR-EULAR
2.  A loss of telocytes accompanies fibrosis of multiple organs in systemic sclerosis 
Systemic sclerosis (SSc) is a complex connective tissue disease characterized by fibrosis of the skin and various internal organs. In SSc, telocytes, a peculiar type of stromal (interstitial) cells, display severe ultrastructural damages and are progressively lost from the clinically affected skin. The aim of the present work was to investigate the presence and distribution of telocytes in the internal organs of SSc patients. Archival paraffin-embedded samples of gastric wall, myocardium and lung from SSc patients and controls were collected. Tissue sections were stained with Masson's trichrome to detect fibrosis. Telocytes were studied on tissue sections subjected to CD34 immunostaining. CD34/CD31 double immunofluorescence was performed to unequivocally differentiate telocytes (CD34-positive/CD31-negative) from vascular endothelial cells (CD34-positive/CD31-positive). Few telocytes entrapped in the fibrotic extracellular matrix were found in the muscularis mucosae and submucosa of SSc gastric wall. In the muscle layers and myenteric plexus, the network of telocytes was discontinuous or even completely absent around smooth muscle cells and ganglia. Telocytes were almost completely absent in fibrotic areas of SSc myocardium. In SSc fibrotic lung, few or no telocytes were observed in the thickened alveolar septa, around blood vessels and in the interstitial space surrounding terminal and respiratory bronchioles. In SSc, the loss of telocytes is not restricted to the skin, but it is a widespread process affecting multiple organs targeted by the fibrotic process. As telocytes are believed to be key players in the regulation of tissue/organ homoeostasis, our data suggest that telocyte loss might have important pathophysiological implications in SSc.
doi:10.1111/jcmm.12228
PMCID: PMC3930412  PMID: 24467430
telocytes; systemic sclerosis; scleroderma; fibrosis; gastric wall; myocardium; lung; CD34; immunohistochemistry
3.  Decreased expression of the endothelial cell-derived factor EGFL7 in systemic sclerosis: potential contribution to impaired angiogenesis and vasculogenesis 
Arthritis Research & Therapy  2013;15(5):R165.
Introduction
Microvascular damage and defective angiogenesis and vasculogenesis have a major role in the pathogenesis of systemic sclerosis (SSc). Epidermal growth factor-like domain 7 (EGFL7) is a proangiogenic molecule which is predominantly expressed and secreted by endothelial cells and their progenitors and controls vascular development and integrity. In this study, we investigated the possible involvement of EGFL7 in SSc.
Methods
Serum EGFL7 levels from 60 patients with SSc and 35 age- and sex-matched healthy controls were examined by colorimetric sandwich enzyme-linked immunosorbent assay. The expression of EGFL7 in forearm skin biopsies (n = 16 SSc, n = 10 controls), cultured dermal microvascular endothelial cells (MVECs) (n = 3 SSc, n = 3 controls) and late-outgrowth peripheral blood endothelial progenitor cell (EPC)-derived endothelial cells (n = 15 SSc, n = 8 controls) was investigated by immunofluorescence and Western blotting.
Results
Serum EGFL7 levels were detectable in 68.6% of healthy controls and 45% of SSc cases (P < 0.05). Circulating levels of EGFL7 were significantly decreased in SSc patients compared with healthy controls (P = 0.01). Serum levels of EGFL7 were significantly lower in both limited cutaneous SSc and diffuse cutaneous SSc patients than in controls (P = 0.02 and P = 0.04, respectively). In SSc, decreased serum EGFL7 levels were significantly correlated with the severity of nailfold capillary abnormalities. Patients with the most severe capillary changes and digital ulcers had serum EGFL7 levels significantly lower than healthy controls, while the EGFL7 levels did not differ significantly between controls and SSc patients with less capillary damage and lack of digital ulcers. Endothelial EGFL7 expression was strongly downregulated or even almost completely undetectable in SSc-affected dermis compared with controls (P < 0.001). In cultured SSc dermal MVECs and late-outgrowth peripheral blood EPC-derived endothelial cells, EGFL7 was significantly downregulated compared with cells obtained from healthy subjects (P < 0.01 and P < 0.001, respectively).
Conclusions
Our findings suggest that the loss of EGFL7 expression in endothelial cells and their progenitors might play a role in the development and progression of peripheral microvascular damage and the defective vascular repair process characteristic of SSc.
doi:10.1186/ar4349
PMCID: PMC3978601  PMID: 24286167
4.  Systemic sclerosis sera affect fibrillin-1 deposition by dermal blood microvascular endothelial cells: therapeutic implications of cyclophosphamide 
Introduction
Systemic sclerosis (SSc) is a connective tissue disorder characterized by endothelial cell injury, autoimmunity and fibrosis. The following three fibrillin-1 alterations have been reported in SSc. (1) Fibrillin-1 microfibrils are disorganized in SSc dermis. (2) Fibrillin-1 microfibrils produced by SSc fibroblasts are unstable. (3) Mutations in the FBN1 gene and anti-fibrillin-1 autoantibodies have been reported in SSc. Fibrillin-1 microfibrils, which are abundantly produced by blood and lymphatic microvascular endothelial cells (B-MVECs and Ly-MVECs, respectively), sequester in the extracellular matrix the latent form of the potent profibrotic cytokine transforming growth factor β (TGF-β). In the present study, we evaluated the effects of SSc sera on the deposition of fibrillin-1 and microfibril-associated glycoprotein 1 (MAGP-1) and the expression of focal adhesion molecules by dermal B-MVECs and Ly-MVECs.
Methods
Dermal B-MVECs and Ly-MVECs were challenged with sera from SSc patients who were treatment-naïve or under cyclophosphamide (CYC) treatment and with sera from healthy controls. Fibrillin-1/MAGP-1 synthesis and deposition and the expression of αvβ3 integrin/phosphorylated focal adhesion kinase and vinculin/actin were evaluated by immunofluorescence and quantified by morphometric analysis.
Results
Fibrillin-1 and MAGP-1 colocalized in all experimental conditions, forming a honeycomb pattern in B-MVECs and a dense mesh of short segments in Ly-MVECs. In B-MVECs, fibrillin-1/MAGP-1 production and αvβ3 integrin expression significantly decreased upon challenge with sera from naïve SSc patients compared with healthy controls. Upon challenge of B-MVECs with sera from CYC-treated SSc patients, fibrillin-1/MAGP-1 and αvβ3 integrin levels were comparable to those of cells treated with healthy sera. Ly-MVECs challenged with SSc sera did not differ from those treated with healthy control sera in the expression of any of the molecules assayed.
Conclusions
Because of the critical role of fibrillin-1 in sequestering the latent form of TGF-β in the extracellular matrix, its decreased deposition by B-MVECs challenged with SSc sera might contribute to dermal fibrosis. In SSc, CYC treatment might limit fibrosis through the maintenance of physiologic fibrillin-1 synthesis and deposition by B-MVECs.
doi:10.1186/ar4270
PMCID: PMC3978697  PMID: 23962393
Systemic sclerosis; blood and lymphatic microvascular endothelial cells; fibrillin-1; focal adhesion molecules; cyclophosphamide
5.  High serum sCD163/sTWEAK ratio is associated with lower risk of digital ulcers but more severe skin disease in patients with systemic sclerosis 
Introduction
Systemic sclerosis (SSc) is an autoimmune disease characterized by chronic inflammation, vascular injury and excessive fibrosis. CD163 is a scavenger receptor which affects inflammatory response and may contribute to connective tissue remodelling. It has recently been demonstrated that CD163 can bind and neutralize the TNF-like weak inducer of apoptosis (TWEAK), a multifunctional cytokine which regulates inflammation, angiogenesis and tissue remodelling. We aimed to investigate the relationships between serum levels of soluble CD163 (sCD163) and soluble TWEAK (sTWEAK) in relation to disease manifestations in SSc patients.
Methods
This study included 89 patients with SSc who had not received immunosuppressive drugs or steroids for at least 6 months and 48 age- and sex-matched healthy controls (HC) from four European centres. Serum concentrations of sTWEAK and sCD163 were measured using commercially available ELISA kits.
Results
The mean serum concentrations of sTWEAK were comparable between SSc patients (mean +/- SD: 270 +/- 171 pg/mL) and HC (294 +/- 147pg/mL, P >0.05). Concentration of sCD163 and sCD163/sTWEAK ratio were significantly greater in SSc patients (984 +/- 420 ng/mL and 4837 +/- 3103, respectively) as compared to HC (823 +/- 331 ng/mL and 3115 +/- 1346 respectively, P <0.05 for both). High sCD163 levels and a high sCD163/sTWEAK ratio (defined as > mean +2SD of HC) were both associated with a lower risk of digital ulcers in SSc patients (OR, 95%CI: 0.09; 0.01, 0.71, and 0.17; 0.06, 0.51, respectively). Accordingly, patients without digital ulcers had a significantly higher sCD163 concentration and sCD163/sTWEAK ratio as compared to SSc patients with digital ulcers (P <0.01 for both) and HC (P <0.05 for both). A high sCD163/sTWEAK ratio, but not high sCD163 levels, was associated with greater skin involvement.
Conclusions
The results of our study indicate that CD163-TWEAK interactions might play a role in the pathogenesis of SSc and that CD163 may protect against the development of digital ulcers in SSc. Further studies are required to reveal whether targeting of the CD163-TWEAK pathway might be a potential strategy for treating vascular disease and/or skin fibrosis in SSc.
doi:10.1186/ar4246
PMCID: PMC4060194  PMID: 23800379
6.  Evidence for progressive reduction and loss of telocytes in the dermal cellular network of systemic sclerosis 
Telocytes, a peculiar type of stromal cells, have been recently identified in a variety of tissues and organs, including human skin. Systemic sclerosis (SSc, scleroderma) is a complex connective tissue disease characterized by fibrosis of the skin and internal organs. We presently investigated telocyte distribution and features in the skin of SSc patients compared with normal skin. By an integrated immunohistochemical and transmission electron microscopy approach, we confirmed that telocytes were present in human dermis, where they were mainly recognizable by their typical ultrastructural features and were immunophenotypically characterized by CD34 expression. Our findings also showed that dermal telocytes were immunophenotypically negative for CD31/PECAM-1 (endothelial cells), α-SMA (myofibroblasts, pericytes, vascular smooth muscle cells), CD11c (dendritic cells, macrophages), CD90/Thy-1 (fibroblasts) and c-kit/CD117 (mast cells). In normal skin, telocytes were organized to form three-dimensional networks distributed among collagen bundles and elastic fibres, and surrounded microvessels, nerves and skin adnexa (hair follicles, sebaceous and sweat glands). Telocytes displayed severe ultrastructural damages (swollen mitochondria, cytoplasmic vacuolization, lipofuscinic bodies) suggestive of ischaemia-induced cell degeneration and were progressively lost from the clinically affected skin of SSc patients. Telocyte damage and loss evolved differently according to SSc subsets and stages, being more rapid and severe in diffuse SSc. Briefly, in human skin telocytes are a distinct stromal cell population. In SSc skin, the progressive loss of telocytes might (i) contribute to the altered three-dimensional organization of the extracellular matrix, (ii) reduce the control of fibroblast, myofibroblast and mast cell activity, and (iii) impair skin regeneration and/or repair.
doi:10.1111/jcmm.12028
PMCID: PMC3822649  PMID: 23444845
telocytes; skin; dermis; systemic sclerosis; scleroderma; fibrosis; immunohistochemistry; transmission electron microscopy
8.  Reduced circulating levels of angiotensin‐(1–7) in systemic sclerosis: a new pathway in the dysregulation of endothelial‐dependent vascular tone control 
Annals of the Rheumatic Diseases  2007;66(10):1305-1310.
Objective
Systemic sclerosis (SSc) impairs endothelium‐dependent vasodilatation. Among angiotensin I (Ang I)‐derived compounds, vasoconstrictor angiotensin II (Ang II) and vasodilator angiotensin‐(1–7) (Ang‐(1–7)), cleaved from ACE and neutral endopeptidase (NEP) 24.11, respectively, play an important role in vascular tone regulation. Ang‐(1–7) may act independently or by activating other vasodilating molecules, such as nitric oxide (NO) or prostaglandin I2 (PGI2). Our aim was to assess, in patients with SSc, circulating levels of Ang I, Ang II and Ang‐(1–7), with their metabolising enzymes ACE and NEP, and levels of NO and PGI2, and to correlate them to the main characteristics of SSc.
Methods
Levels of Ang I, Ang II, Ang‐(1–7), NEP, ACE, NO and PGI2 were measured in 32 patients with SSc, who were also assessed for humoral and clinical characteristics, and 55 controls.
Results
Plasma Ang I, Ang II and Ang‐(1–7) levels were lower in patients with SSc than in controls (p<0.001in all cases). When Ang II and Ang‐(1–7) levels were expressed as a function of the available Ang I, lower Ang‐(1–7) levels in patients with SSc than in controls were confirmed (p<0.001), while no difference was found for Ang II levels. In patients with SSc, the Ang II/Ang‐(1–7) ratio indicated a prevalence of Ang II over Ang‐(1–7), while in controls Ang‐(1–7) was prevalent (p<0.001). Levels of ACE, NEP, NO and PGI2 were lower in patients with SSc than in controls (p<0.05 in all cases).
Conclusion
In patients with SSc, prevalence of the vasoconstricting Ang II over the vasodilator Ang‐(1–7) suggests a dysfunction of the angiotensin‐derived cascade that may contribute to dysregulation of vascular tone.
doi:10.1136/ard.2006.064493
PMCID: PMC1994289  PMID: 17360781
angiotensin (1–7); angiotensin converting enzyme; endothelium; neutral endopeptidase; systemic sclerosis
9.  Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005 
Multipotent mesenchymal stromal cells isolated from bone marrow and other sites are currently being studied to determine their potential role in the pathogenesis and/or management of autoimmune diseases. In vitro studies have shown that they exhibit a dose-dependent antiproliferative effect on T and B lymphocytes, dendritic cells, natural killer cells and various B cell tumour lines – an effect that is both cell contact and soluble factor dependent. Animal models of autoimmune disease treated with multipotent mesenchymal stromal cells have mostly exhibited a positive clinical response, as have a limited number of patients suffering from acute graft versus host disease. This review summarizes the findings of a 1-day meeting devoted to the subject with the aim of coordinating efforts.
doi:10.1186/ar2103
PMCID: PMC1860056  PMID: 17284303
10.  A model of anti-angiogenesis: differential transcriptosome profiling of microvascular endothelial cells from diffuse systemic sclerosis patients 
The objective of this work was to identify genes involved in impaired angiogenesis by comparing the transcriptosomes of microvascular endothelial cells from normal subjects and patients affected by systemic sclerosis (SSc), as a unique human model disease characterized by insufficient angiogenesis. Total RNAs, prepared from skin endothelial cells of clinically healthy subjects and SSc patients affected by the diffuse form of the disease, were pooled, labeled with fluorochromes, and hybridized to 14,000 70 mer oligonucleotide microarrays. Genes were analyzed based on gene expression levels and categorized into different functional groups based on the description of the Gene Ontology (GO) consortium to identify statistically significant terms. Quantitative PCR was used to validate the array results. After data processing and application of the filtering criteria, the analyzable features numbered 6,724. About 3% of analyzable transcripts (199) were differentially expressed, 141 more abundantly and 58 less abundantly in SSc endothelial cells. Surprisingly, SSc endothelial cells over-express pro-angiogenic transcripts, but also show up-regulation of genes exerting a powerful negative control, and down-regulation of genes critical to cell migration and extracellular matrix-cytoskeleton coupling, all alterations that provide an impediment to correct angiogenesis. We also identified transcripts controlling haemostasis, inflammation, stimulus transduction, transcription, protein synthesis, and genome organization. An up-regulation of transcripts related to protein degradation and ubiquitination was observed in SSc endothelial cells. We have validated data on the main anti-angiogenesis-related genes by RT-PCR, western blotting, in vitro angiogenesis and immunohistochemistry. These observations indicate that microvascular endothelial cells of patients with SSc show abnormalities in a variety of genes that are able to account for defective angiogenesis.
doi:10.1186/ar2002
PMCID: PMC1779372  PMID: 16859528
11.  Angiogenic and angiostatic factors in systemic sclerosis: increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers 
Arthritis Research  2002;4(6):R11.
To examine whether the lack of sufficient neoangiogenesis in systemic sclerosis (SSc) is caused by a decrease in angiogenic factors and/or an increase in angiostatic factors, the potent proangiogenic molecules vascular endothelial growth factor (VEGF) and basic fibroblast growth factor, and the angiostatic factor endostatin were determined in patients with SSc and in healthy controls. Forty-three patients with established SSc and nine patients with pre-SSc were included in the study. Serum levels of VEGF, basic fibroblast growth factor and endostatin were measured by ELISA. Age-matched and sex-matched healthy volunteers were used as controls. Highly significant differences were found in serum levels of VEGF between SSc patients and healthy controls, whereas no differences could be detected for endostatin and basic fibroblast growth factor. Significantly higher levels of VEGF were detected in patients with Scl-70 autoantibodies and in patients with diffuse SSc. Patients with pre-SSc and short disease duration showed significant higher levels of VEGF than healthy controls, indicating that elevated serum levels of VEGF are a feature of the earliest disease stages. Patients without fingertip ulcers were found to have higher levels of VEGF than patients with fingertip ulcers. Levels of endostatin were associated with the presence of giant capillaries in nailfold capillaroscopy, but not with any other clinical parameter. The results show that the concentration of VEGF is already increased in the serum of SSc patients at the earliest stages of the disease. VEGF appears to be protective against ischemic manifestations when concentrations of VEGF exceed a certain threshold level.
PMCID: PMC153841  PMID: 12453314
basic fibroblast growth factor; endostatin; fingertip ulcers; systemic sclerosis; vascular endothelial growth factor

Results 1-11 (11)