PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Therapeutic Polyclonal human CD8+ Fox3+ TNFR2+ PD-L1+ Regulatory Cells Induced ex-vivo 
Clinical immunology (Orlando, Fla.)  2013;149(3):450-463.
We report that polyclonal CD8regs generated in one week ex-vivo with anti-CD3/28 beads and cytokines rapidly developed suppressive activity in vitro sustained by TGF-β. In immunodeficient mice, these CD8regs demonstrated a markedly protective, IL-10 dependent activity against a xeno-GVHD. They expressed IL-2Rα/β, Foxp3, TNFR2, and the negative co-stimulatory receptors CTLA-4, PD-1, PD-L1 and Tim-3. Suppressive activity in vitro correlated better with TNFR2 and PD-L1 than Foxp3. Blocking studies suggested that TNF enhanced PD-L1 expression and the suppressive activity of the CD8regs generated. Unlike other polyclonal CD4 and CD8 Tregs, these CD8regs preferentially targeted allogeneic T cells, but they lacked cytotoxic activity against them even after sensitization. Unlike CD4regs, these CD8regs could produce IL-2 and proliferate while inhibiting target cells. If these CD8regs can persist in foreign hosts without impairing immune surveillance, they could serve as a practical remission-inducing product for the treatment of autoimmune diseases, graft-versus-host disease, and allograft rejection.
doi:10.1016/j.clim.2013.08.007
PMCID: PMC3941976  PMID: 24211847
2.  The potential of human regulatory T cells generated ex vivo as a treatment for lupus and other chronic inflammatory diseases 
Arthritis Research  2002;4(4):241-246.
Regulatory T cells prevent autoimmunity by suppressing the reactivity of potentially aggressive self-reactive T cells. Contact-dependent CD4+ CD25+ 'professional' suppressor cells and other cytokine-producing CD4+ and CD8+ T-cell subsets mediate this protective function. Evidence will be reviewed that T cells primed with transforming growth factor (TGF)-β expand rapidly following restimulation. Certain CD4+ T cells become contact-dependent suppressor cells and other CD4+ and CD8+ cells become cytokine-producing regulatory cells. This effect is dependent upon a sufficient amount of IL-2 in the microenvironment to overcome the suppressive effects of TGF-β. The adoptive transfer of these suppressor cells generated ex vivo can protect mice from developing chronic graft-versus-host disease with a lupus-like syndrome and alter the course of established disease. These data suggest that autologous T cells primed and expanded with TGF-β have the potential to be used as a therapy for patients with systemic lupus erythematosus and other chronic inflammatory diseases. This novel adoptive immunotherapy also has the potential to prevent the rejection of allogeneic transplants.
PMCID: PMC128930  PMID: 12106494
autoimmunity; IL-2; regulatory T cells; systemic lupus erythematosus; transforming growth factor-β

Results 1-2 (2)