Search tips
Search criteria

Results 1-25 (39)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Alarmins: awaiting a clinical response 
The Journal of Clinical Investigation  2012;122(8):2711-2719.
Alarmins are endogenous molecules that are constitutively available and released upon tissue damage and activate the immune system. Current evidence indicates that uncontrolled and excessive release of alarmins contributes to the dysregulated processes seen in many inflammatory and autoimmune conditions, as well as tumorigenesis and cancer spread. Conversely, alarmins have also been found to play a major role in the orchestration of tissue homeostasis, including repair and remodeling in the heart, skin, and nervous system. Here, we provide an update and overview on alarmins, highlighting the areas that may benefit from this clinical translation.
PMCID: PMC3408740  PMID: 22850880
2.  Differential effects of Th1 versus Th2 cytokines in combination with hypoxia on HIFs and angiogenesis in RA 
Arthritis Research & Therapy  2012;14(4):R180.
Hypoxia and T-helper cell 1 (Th1) cytokine-driven inflammation are key features of rheumatoid arthritis (RA) and contribute to disease pathogenesis by promoting angiogenesis. The objective of our study was to characterise the angiogenic gene signature of RA fibroblast-like synoviocytes (FLS) in response to hypoxia, as well as Th1 and T-helper cell 2 (Th2) cytokines, and in particular to dissect out effects of combined hypoxia and cytokines on hypoxia inducible transcription factors (HIFs) and angiogenesis.
Human angiogenesis PCR arrays were used to screen cDNA from RA FLS exposed to hypoxia (1% oxygen) or dimethyloxalylglycine, which stabilises HIFs. The involvement of HIF isoforms in generating the angiogenic signature of RA FLS stimulated with hypoxia and/or cytokines was investigated using a DNA-binding assay and RNA interference. The angiogenic potential of conditioned media from hypoxia-treated and/or cytokine-treated RA FLS was measured using an in vitro endothelial-based assay.
Expression of 12 angiogenic genes was significantly altered in RA FLS exposed to hypoxia, and seven of these were changed by dimethyloxalylglycine, including ephrin A3 (EFNA3), vascular endothelial growth factor (VEGF), adipokines angiopoietin-like (ANGPTL)-4 and leptin. These four proangiogenic genes were dependent on HIF-1 in hypoxia to various degrees: EFNA3 >ANGPTL-4 >VEGF >leptin. The Th1 cytokines TNFα and IL-1β induced HIF-1 but not HIF-2 transcription as well as activity, and this effect was additive with hypoxia. In contrast, Th2 cytokines had no effect on HIFs. IL-1β synergised with hypoxia to upregulate EFNA3 and VEGF in a HIF-1-dependent fashion but, despite strongly inducing HIF-1, TNFα suppressed adipokine expression and had minimal effect on EFNA3. Supernatants from RA FLS subjected to hypoxia and TNFα induced fewer endothelial tubules than those from FLS subjected to TNFα or hypoxia alone, despite high VEGF protein levels. The Th2 cytokine IL-4 strongly induced ANGPTL-4 and angiogenesis by normoxic FLS and synergised with hypoxia to induce further proangiogenic activity.
The present work demonstrates that Th1 cytokines in combination with hypoxia are not sufficient to induce angiogenic activity by RA FLS despite HIF-1 activation and VEGF production. In contrast, Th2 cytokines induce angiogenic activity in normoxia and hypoxia, despite their inability to activate HIFs, highlighting the complex relationships between hypoxia, angiogenesis and inflammation in RA.
PMCID: PMC3580575  PMID: 22866899
3.  Gene expression profiling and functional analysis of angiogenic markers in murine collagen-induced arthritis 
Arthritis Research & Therapy  2012;14(4):R169.
Dysregulated angiogenesis is implicated in the pathogenesis of rheumatoid arthritis (RA). To provide a more profound understanding of arthritis-associated angiogenesis, we evaluated the expression of angiogenesis-modulating genes at onset, peak and declining phases of collagen-induced arthritis (CIA), a well-established mouse model for RA.
CIA was induced in DBA/1 mice with type II collagen. Functional capillary density in synovial tissue of knee joints was determined by intravital fluorescence microscopy. To assess the ability of arthritic joint homogenates to induce angiogenesis, an endothelial chemotaxis assay and an in vivo matrigel plug assay were employed. The temporal expression profile of angiogenesis-related genes in arthritic paws was analysed by quantitative real-time RT-PCR using an angiogenesis focused array as well as gene specific PCR. Finally, we investigated the therapeutic effect of a monoclonal antibody specifically blocking the binding of VEGF to neuropilin (NRP)-1.
Although arthritic paw homogenates displayed angiogenic activity in vitro and in vivo, and synovia of arthritic paws appeared highly vascularised on histological examination, the functional capillary density in arthritic knee synovia was significantly decreased, whereas capillary diameter was increased. Of the 84 genes analysed, 41 displayed a differential expression in arthritic paws as compared to control paws. Most significant alterations were seen at the peak of clinical arthritis. Increased mRNA expression could be observed for VEGF receptors (Flt-1, Flk-1, Nrp-1, Nrp-2), as well as for midkine, hepatocyte growth factor, insulin-like growth factor-1 and angiopoietin-1. Signalling through NRP-1 accounted in part for the chemotactic activity for endothelial cells observed in arthritic paw homogenates. Importantly, therapeutic administration of anti-NRP1B antibody significantly reduced disease severity and progression in CIA mice.
Our findings confirm that the arthritic synovium in murine CIA is a site of active angiogenesis, but an altered balance in the expression of angiogenic factors seems to favour the formation of non-functional and dilated capillaries. Furthermore, our results validate NRP-1 as a key player in the pathogenesis of CIA, and support the VEGF/VEGF receptor pathway as a potential therapeutic target in RA.
PMCID: PMC3580563  PMID: 22817681
4.  Human epidermal growth factor receptor bispecific ligand trap RB200: abrogation of collagen-induced arthritis in combination with tumour necrosis factor blockade 
Arthritis Research & Therapy  2011;13(5):R161.
Rheumatoid arthritis (RA) is a chronic disease associated with inflammation and destruction of bone and cartilage. Although inhibition of TNFα is widely used to treat RA, a significant number of patients do not respond to TNFα blockade, and therefore there is a compelling need to continue to identify alternative therapeutic strategies for treating chronic inflammatory diseases such as RA. The anti-epidermal growth factor (anti-EGF) receptor antibody trastuzumab has revolutionised the treatment of patients with EGF receptor-positive breast cancer. Expression of EGF ligands and receptors (known as HER) has also been documented in RA. The highly unique compound RB200 is a bispecific ligand trap that is composed of full-length extracellular domains of HER1 and HER3 EGF receptors. Because of its pan-HER specificity, RB200 inhibits responses mediated by HER1, HER2 and HER3 in vitro and in vivo. The objective of this study was to assess the effect of RB200 combined with TNF blockade in a murine collagen-induced arthritis (CIA) model of RA.
Arthritic mice were treated with RB200 alone or in combination with the TNF receptor fusion protein etanercept. We performed immunohistochemistry to assess CD31 and in vivo fluorescent imaging using anti-E-selectin antibody labelled with fluorescent dye to elucidate the effect of RB200 on the vasculature in CIA.
RB200 significantly abrogated CIA by reducing paw swelling and clinical scores. Importantly, low-dose RB200 combined with a suboptimal dose of etanercept led to complete abrogation of arthritis. Moreover, the combination of RB200 with etanercept abrogated the intensity of the E-selectin-targeted signal to the level seen in control animals not immunised to CIA.
The human pan-EGF receptor bispecific ligand trap RB200, when combined with low-dose etanercept, abrogates CIA, suggesting that inhibition of events downstream of EGF receptor activation, in combination with TNFα inhibitors, may hold promise as a future therapy for patients with RA.
PMCID: PMC3308094  PMID: 21982514
5.  Evidence for a DC-specific inhibitory mechanism that depends on MyD88 and SIGIRR 
Dendritic cells (DCs) are an essential link between the innate and adaptive immune response. In order to become effective antigen presenting cells DCs need to undergo maturation, during which they up-regulate co-stimulatory molecules and produce cytokines. There is great interest in utilising DCs in vaccination regimes. Over recent years, Toll-like receptor (TLR) signalling has been recognised to be one of the major inducers of DC maturation. This study describes a mutant version of the TLR adaptor molecule MyD88 (termed MyD88lpr) as a novel adjuvant for vaccination regimes. MyD88lpr specifically activates DCs by disrupting a DC intrinsic inhibitory mechanism, which is dependent on SIGIRR. Moreover, MyD88lpr was able to induce an IgG2a dominated response to a co-expressed antigen, suggesting Th1 immunity. However, when used as a vaccine adjuvant for Influenza Nucleoprotein there was no significant difference in the lung viral titres during the infection. This study describes MyD88lpr as a potential adjuvant for vaccinations, which would be able to target DCs specifically.
PMCID: PMC2878274  PMID: 20500691
Toll-like receptors; SIGIRR; inflammation
6.  IL-10 inhibits transcription elongation of the human TNF gene in primary macrophages 
The Journal of Experimental Medicine  2010;207(10):2081-2088.
IL-10 plays a central nonredundant role in limiting inflammation in vivo. However, the mechanisms involved remain to be resolved. Using primary human macrophages, we found that IL-10 inhibits selected inflammatory genes, primarily at a level of transcription. At the TNF gene, this occurs not through an inhibition of RNA polymerase II (Pol II) recruitment and transcription initiation but through a mechanism targeting the stimulation of transcription elongation by cyclin-dependent kinase (CDK) 9. We demonstrated an unanticipated requirement for a region downstream of the TNF 3′ untranslated region (UTR) that contains the nuclear factor κB (NF-κB) binding motif (κB4) both for induction of transcription by lipopolysaccharide (LPS) and its inhibition by IL-10. IL-10 not only inhibits the recruitment of RelA to regions containing κB sites at the TNF gene but also to those found at other LPS-induced genes. We show that although IL-10 elicits a general block in RelA recruitment to its genomic targets, the gene-specific nature of IL-10’s actions are defined through the differential recruitment of CDK9 and the control of transcription elongation. At TNF, but not NFKBIA, the consequence of RelA recruitment inhibition is a loss of CDK9 recruitment, preventing the stimulation of transcription elongation.
PMCID: PMC2947066  PMID: 20805562
7.  Could toll‐like receptors provide a missing link in chronic inflammation in rheumatoid arthritis? Lessons from a study on human rheumatoid tissue 
Annals of the Rheumatic Diseases  2007;66(Suppl 3):iii81-iii86.
In the last decade the development of a number of biological therapies has revolutionised the treatment of rheumatic diseases. The first and most widely used of these approaches, tumour necrosis factor (TNF) blockade (infliximab, entanercept, adalimumab), has now been administered to over a million patients. However, the success of these biological therapies has also highlighted their limitations. None of these treatments has shown a 100% patient response; normally responses are in the 50–70% range. As proteins, these drugs cannot be given orally and they are expensive to produce, a cost ultimately borne by the patient/health provider that can seriously limit the availability of these drugs. Lastly, these treatments, whether involving the systemic neutralisation of a cytokine (eg, TNF or IL6 receptor blockade (tocilizumab)), the ablation of a B cell population (anti‐CD20, rituximab), or the potential disruption of important cellular interactions as with CTLA4‐Ig (abatacept), can cause major perturbations of the immune system, the long‐term effects of which are still unclear. At present, treatments such as TNF blockade can result in an increased infectious risk and the reactivation of tuberculosis can be a major issue in certain populations. As with all therapies, there is an increasing large refractory population over time. Therefore, despite the undoubted success of these therapies, there is room for improvement. Although it might be too much to expect any new treatment to affect a “cure” (all the current biological therapies require repeated administrations), there are definite gains to be made in terms of cost, oral bioavailability and a more selective interference with the immune–inflammatory response.
PMCID: PMC2095278  PMID: 17934103
8.  Apremilast, a novel PDE4 inhibitor, inhibits spontaneous production of tumour necrosis factor-alpha from human rheumatoid synovial cells and ameliorates experimental arthritis 
Arthritis Research & Therapy  2010;12(3):R107.
Type 4 phosphodiesterases (PDE4) play an important role in immune cells through the hydrolysis of the second messenger, cAMP. Inhibition of PDE4 has previously been shown to suppress immune and inflammatory responses, demonstrating PDE4 to be a valid therapeutic target for immune-mediated pathologies. We assessed the anti-inflammatory effects of a novel PDE4 inhibitor, apremilast, in human synovial cells from rheumatoid arthritis (RA) patients, as well as two murine models of arthritis.
Cells liberated from tissue excised from arthritic joints of RA patients were cultured in the presence of increasing concentrations of apremilast for 48 hours and spontaneous tumour necrosis factor-alpha (TNFα) production was analysed in culture supernatants by ELISA. In addition, arthritis was induced in BALB/c and DBA/1 mice by passive transfer of anti-type II collagen mAb and immunisation with type II collagen, respectively. Mice with established arthritis received 5 or 25 mg/kg apremilast and disease severity was monitored relative to mice receiving vehicle alone. At the end of the study, paws were removed and processed for histopathological assessment. Behavioural effects of apremilast, relative to rolipram, were assessed in naïve DBA/1 mice using an automated activity monitor (LABORAS).
Apremilast dose dependently inhibited spontaneous release of TNFα from human rheumatoid synovial membrane cultures. Furthermore, apremilast significantly reduced clinical score in both murine models of arthritis over a ten day treatment period and maintained a healthy joint architecture in a dose-dependent manner. Importantly, unlike rolipram, apremilast demonstrated no adverse behavioural effects in naïve mice.
Apremilast is an orally available PDE4 inhibitor that reduces TNFα production from human synovial cells and significantly suppresses experimental arthritis. Apremilast appears to be a potential new agent for the treatment of rheumatoid arthritis.
PMCID: PMC2911898  PMID: 20525198
9.  The impact of IL-1 modulation on the development of lipopolysaccharide-induced cognitive dysfunction 
Critical Care  2010;14(3):R88.
The impact of pro-inflammatory cytokines on neuroinflammation and cognitive function after lipopolysaccharide (LPS) challenge remains elusive. Herein we provide evidence that there is a temporal correlation between high-mobility group box 1 (HMGB-1), microglial activation, and cognitive dysfunction. Disabling the interleukin (IL)-1 signaling pathway is sufficient to reduce inflammation and ameliorate the disability.
Endotoxemia was induced in wild-type and IL-1R-/- mice by intra peritoneal injection of E. Coli LPS (1 mg/kg). Markers of inflammation were assessed both peripherally and centrally, and correlated to behavioral outcome using trace fear conditioning.
Increase in plasma tumor necrosis factor-α (TNFα) peaked at 30 minutes after LPS challenge. Up-regulation of IL-1β, IL-6 and HMGB-1 was more persistent, with detectable levels up to day three. A 15-fold increase in IL-6 and a 6.5-fold increase in IL-1β mRNA at 6 hours post intervention (P < 0.001 respectively) was found in the hippocampus. Reactive microgliosis was observed both at days one and three, and was associated with elevated HMGB-1 and impaired memory retention (P < 0.005). Preemptive administration of IL-1 receptor antagonist (IL-1Ra) significantly reduced plasma cytokines and hippocampal microgliosis and ameliorated cognitive dysfunction without affecting HMGB-1 levels. Similar results were observed in LPS-challenged mice lacking the IL-1 receptor to those seen in LPS-challenged wild type mice treated with IL-1Ra.
These data suggest that by blocking IL-1 signaling, the inflammatory cascade to LPS is attenuated, thereby reducing microglial activation and preventing the behavioral abnormality.
PMCID: PMC2911722  PMID: 20470406
10.  Investigating the role of the interleukin-23/-17A axis in rheumatoid arthritis 
Rheumatology (Oxford, England)  2009;48(12):1581-1589.
Objective. IL-23 is a pro-inflammatory cytokine proposed to be central to the development of autoimmune disease. We investigated whether IL-23, together with the downstream mediator IL-17A, was present and functional in RA in humans.
Methods. RA synovial cells were cultured in the presence or absence of antibodies directed against IL-23p19 or -23R and -17. IL-23, -12, -17, and their receptors, and IL-6, -1β and TNF-α were measured by ELISA and/or PCR.
Results. Small amounts of cell-associated IL-23 (median 110 pg/ml) were detected in RA synovial cultures, and found to be functional as IL-23R blockade resulting in a significant inhibition of TNF-α (57%), IL-1β (51%) and IL-6 (30%). However, there was a considerable variability between individual patient samples, and anti-IL-23p19 was found to be considerably less effective. IL-17A protein was detected in ∼40% of the supernatants and IL-17A blockade, in IL-17A-producing cultures, resulted in a small but significant inhibition of TNF-α (38%), IL-1β (23%) and IL-6 (22%). Addition of recombinant IL-23 to cultures had a variable effect on the spontaneous production of endogenous IL-17A with enhancement observed in some but not all cultures, suggesting that either the low levels of endogenous IL-23 are sufficient to support cytokine production and/or that the relevant Th17 cells were not present.
Conclusions. These results suggest that although IL-23 may have pathogenic activity in a proportion of patients with late-stage RA, it is not abundantly produced in this inflammatory tissue, nor does it have a dominant role in all patient tissues analysed.
PMCID: PMC2777488  PMID: 19815670
IL-23; IL-17; Rheumatoid arthritis; Anti-IL-23p19; Anti-IL-23R; Synovium; Cytokine
11.  A view from a European medical academic who spends time in the US 
The Journal of Clinical Investigation  2009;119(10):2861-2862.
PMCID: PMC2752103  PMID: 20069719
13.  Many cytokines are very useful therapeutic targets in disease 
The Journal of Clinical Investigation  2008;118(11):3533-3536.
Cytokines are a large family of more than 100 small proteins that function as short-range mediators involved in essentially all biological processes. They have been found to be important rate-limiting signals, and it is now known that blocking some cytokines, e.g., TNF-α, and cytokine receptors, such as human EGFR 1 (HER1) or HER2, yields effective therapeutics that address unmet needs. This Review Series surveys three chronic inflammatory disease areas and two forms of cancer and discusses the important role of cytokines and their receptors in these disease processes. Their role as potential therapeutic targets is also highlighted.
PMCID: PMC2575703  PMID: 18982159
14.  Novel splice variants derived from the receptor tyrosine kinase superfamily are potential therapeutics for rheumatoid arthritis 
Despite the advent of biological therapies for the treatment of rheumatoid arthritis, there is a compelling need to develop alternative therapeutic targets for nonresponders to existing treatments. Soluble receptors occur naturally in vivo, such as the splice variant of the cell surface receptor for vascular endothelial growth factor (VEGF) – a key regulator of angiogenesis in rheumatoid arthritis. Bioinformatics analyses predict that the majority of human genes undergo alternative splicing, generating proteins – many of which may have regulatory functions. The objective of the present study was to identify alternative splice variants (ASV) from cell surface receptor genes, and to determine whether the novel proteins encoded exert therapeutic activity in an in vivo model of arthritis.
To identify novel splice variants, we performed RT-PCR using an mRNA pool representing major human tissue types and tumors. Novel ASV were identified by alignment of each cloned sequence to its respective genomic sequence in comparison with full-length transcripts. To test whether these ASV have biologic activity, we characterized a subset of them for ligand binding, and for efficacy in an animal model of arthritis. The in vivo study was accomplished using adenoviruses expressing secreted ASV.
We cloned 60 novel human ASV from 21 genes, encoding cell surface receptors – many of which are known to be important in the regulation of angiogenesis. The ASV were characterized by exon extension, intron retention and alternative exon utilization. Efficient expression and secretion of selected ASV – corresponding to VEGF receptor type 1, VEGF receptor type 2, VEGF receptor type 3, angiopoietin receptor Tie1, Met (receptor for hepatocyte growth factor), colony-stimulating factor 1 receptor, platelet-derived growth factor receptor beta, fibroblast growth factor receptor 1, Kit, and RAGE – was demonstrated, together with binding to their cognate ligands. Importantly, ASV derived from VEGF receptor type 1 and Tie1, and to a lesser extent from VEGF receptor type 2 and fibroblast growth factor receptor 1, reduced clinical signs of arthritis in vivo. The reduction was paralleled by decreased joint inflammation and destruction.
The present study shows that unique ASV derived from receptors that play key roles in angiogenesis – namely, VEGF receptor type 1 and, for the first time, Tie1 – can markedly reduce arthritis severity. More broadly, our results demonstrate that ASV are a source of novel proteins with therapeutic potential in diseases in which angiogenesis and cellular hyperplasia play a central role, such as rheumatoid arthritis.
PMCID: PMC2575619  PMID: 18593464
15.  Resting CD4+ effector memory T cells are precursors of bystander-activated effectors: a surrogate model of rheumatoid arthritis synovial T-cell function 
Previously we described a system whereby human peripheral blood T cells stimulated for 8 days in a cytokine cocktail acquired effector function for contact-dependent induction of proinflammatory cytokines from monocytes. We termed these cells cytokine-activated (Tck) cells and found that the signalling pathways elicited in the responding monocytes were identical whether they were placed in contact with Tck cells or with T cells isolated from rheumatoid arthritis (RA) synovial tissue.
Here, using magnetic beads and fluorescence-activated cell sorting, we extensively phenotype the Tck effector cells and conclude that effector function resides within the CD4+CD45RO+, CCR7-, CD49dhigh population, and that these cells are derived from the effector memory CD4+ T cells in resting blood.
After stimulation in culture, these cells produce a wide range of T-cell cytokines, undergo proliferation and differentiate to acquire an extensively activated phenotype resembling RA synovial T cells. Blocking antibodies against CD69, CD18, or CD49d resulted in a reduction of tumour necrosis factor-α production from monocytes stimulated with CD4+CD45RO+ Tck cells in the co-culture assay. Moreover, blockade of these ligands also resulted in inhibition of spontaneous tumour necrosis factor-α production in RA synovial mononuclear cell cultures.
Taken together, these data strengthen our understanding of T-cell effector function, highlight the multiple involvement of different cell surface ligands in cell-cell contact and, provide novel insights into the pathogenesis of inflammatory RA disease.
PMCID: PMC2452984  PMID: 18353171
16.  Collagen-induced arthritis in C57BL/6 mice is associated with a robust and sustained T-cell response to type II collagen 
Many genetically modified mouse strains are now available on a C57BL/6 (H-2b) background, a strain that is relatively resistant to collagen-induced arthritis. To facilitate the molecular understanding of autoimmune arthritis, we characterised the induction of arthritis in C57BL/6 mice and then validated the disease as a relevant pre-clinical model for rheumatoid arthritis.
C57BL/6 mice were immunised with type II collagen using different protocols, and arthritis incidence, severity, and response to commonly used anti-arthritic drugs were assessed and compared with DBA/1 mice. We confirmed that C57BL/6 mice are susceptible to arthritis induced by immunisation with chicken type II collagen and develop strong and sustained T-cell responses to type II collagen. Arthritis was milder in C57BL/6 mice than DBA/1 mice and more closely resembled rheumatoid arthritis in its response to therapeutic intervention. Our findings show that C57BL/6 mice are susceptible to collagen-induced arthritis, providing a valuable model for assessing the role of specific genes involved in the induction and/or maintenance of arthritis and for evaluating the efficacy of novel drugs, particularly those targeted at T cells.
PMCID: PMC2212575  PMID: 17967186
17.  A new JCI conflict-of-interest policy  
Journal of Clinical Investigation  2007;117(3):506-508.
As stewards of the JCI, we are responsible for instituting and sustaining the highest possible standards for integrity. To this end, we have established a very specific set of guidelines for handling potential conflicts of interest — not only for authors and referees, but also for ourselves.
PMCID: PMC1804363  PMID: 17332875
18.  Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005 
Multipotent mesenchymal stromal cells isolated from bone marrow and other sites are currently being studied to determine their potential role in the pathogenesis and/or management of autoimmune diseases. In vitro studies have shown that they exhibit a dose-dependent antiproliferative effect on T and B lymphocytes, dendritic cells, natural killer cells and various B cell tumour lines – an effect that is both cell contact and soluble factor dependent. Animal models of autoimmune disease treated with multipotent mesenchymal stromal cells have mostly exhibited a positive clinical response, as have a limited number of patients suffering from acute graft versus host disease. This review summarizes the findings of a 1-day meeting devoted to the subject with the aim of coordinating efforts.
PMCID: PMC1860056  PMID: 17284303
19.  Molecular Profile of Peripheral Blood Mononuclear Cells from Patients with Rheumatoid Arthritis 
Molecular Medicine  2007;13(1-2):40-58.
Rheumatoid arthritis (RA) is a chronic inflammatory arthritis. Currently, diagnosis of RA may take several weeks, and factors used to predict a poor prognosis are not always reliable. Gene expression in RA may consist of a unique signature. Gene expression analysis has been applied to synovial tissue to define molecularly distinct forms of RA; however, expression analysis of tissue taken from a synovial joint is invasive and clinically impractical. Recent studies have demonstrated that unique gene expression changes can be identified in peripheral blood mononuclear cells (PBMCs) from patients with cancer, multiple sclerosis, and lupus. To identify RA disease-related genes, we performed a global gene expression analysis. RNA from PBMCs of 9 RA patients and 13 normal volunteers was analyzed on an oligonucleotide array. Compared with normal PBMCs, 330 transcripts were differentially expressed in RA. The differentially regulated genes belong to diverse functional classes and include genes involved in calcium binding, chaperones, cytokines, transcription, translation, signal transduction, extracellular matrix, integral to plasma membrane, integral to intracellular membrane, mitochondrial, ribosomal, structural, enzymes, and proteases. A k-nearest neighbor analysis identified 29 transcripts that were preferentially expressed in RA. Ten genes with increased expression in RA PBMCs compared with controls mapped to a RA susceptibility locus, 6p21.3. These results suggest that analysis of RA PBMCs at the molecular level may provide a set of candidate genes that could yield an easily accessible gene signature to aid in early diagnosis and treatment.
PMCID: PMC1869619  PMID: 17515956
20.  Impact of VIP and cAMP on the regulation of TNF-α and IL-10 production: implications for rheumatoid arthritis 
Arthritis Research & Therapy  2003;5(6):R317-R328.
Vasoactive intestinal peptide (VIP) is an anti-inflammatory immunomodulatory neuropeptide with therapeutic potential demonstrated for collagen-induced arthritis. The aim of this study was to characterise its potential anti-arthritic effect on human monocytes, macrophages, T cells, and rheumatoid arthritis synovial membrane cells. Monocytes, macrophages, and T cells derived from human peripheral blood were treated with VIP and compared with other cAMP-elevating drugs for a range of activating stimuli. Cytokine production was assessed for cell cultures and, in addition, the ability of VIPs to activate cAMP response element binding protein. VIP partially suppressed monocyte- and macrophage-derived tumour necrosis factor α (TNF-α) with no effect on IL-10, whereas VIP fails to regulate IL-10 and TNF-α production by T lymphocytes. No such modulation of cytokine profile was observed for rheumatoid arthritis synovial membrane cells. Elevation of intracellular cAMP, on the other hand, potently suppressed macrophage TNF-α production and modulated T-cell response by inhibiting TNF-α and IFN-γ. VIP's lack of effect on IL-10 and its slight effect on TNF-α results from cAMP being rapidly degraded as the phosphodiesterase IV inhibitor, rolipram, rescues cAMP-dependent activation of cAMP response element binding protein. Interestingly, macrophages stimulated with phorbol 12-myristate 13-acetate/ionomycin displayed an augmented IL-10 response upon addition of dibutyryl cAMP, with corresponding downregulation in TNF-α, suggesting a complex interaction between protein kinase C and protein kinase A in cytokine regulation. In conclusion, VIP may represent an efficaceous anti-arthritic treatment modulating macrophage and T-cell cytokine profiles when used alongside a phosphodiesterase inhibitor.
PMCID: PMC333423  PMID: 14680506
IL-10; macrophage; T cells; TNF-α; VIP
21.  The angiogenesis inhibitor protease-activated kringles 1–5 reduces the severity of murine collagen-induced arthritis 
Arthritis Research & Therapy  2002;5(1):R32-R39.
During rheumatoid arthritis there is enlargement and increased cellularity of the synovial lining of joints, before invasion by the synovium of the underlying cartilage and bone. This increased tissue mass requires a network of blood vessels to supply nutrients and oxygen. Disruption of synovial angiogenesis is thus a desirable aim of antiarthritic therapies. Protease-activated kringles 1–5 (K1–5) is an angiogenesis inhibitor related to angiostatin. In common with angiostatin, K1–5 contains the first four kringle domains of plasminogen, but also encompasses the kringle 5 domain, which confers enhanced antiangiogenic activity when compared with angiostatin. The purpose of the present study was to assess the effect on murine arthritis of K1–5. Arthritis was induced in DBA/1 mice by a single injection of bovine collagen. Treatment with K1–5 was commenced on the day of arthritis onset and continued for 10 days, until the end of the experiment. Daily intraperitoneal administration of K1–5 (2 mg/kg body weight) significantly reduced both paw swelling and clinical score (a composite index of the number of arthritic limbs and the severity of disease). The clinical efficacy of this treatment was reflected by a reduction in joint inflammation and destruction, as assessed histologically. These data suggest that antiangiogenic therapies, which block formation of new blood vessels and hence reduce synovial expansion, might be effective in treating rheumatoid arthritis.
PMCID: PMC154428  PMID: 12716451
angiogenesis; arthritis
22.  Preface 
Arthritis Research  2002;4(Suppl 3):I.
PMCID: PMC3273048
23.  High-efficiency gene transfer into nontransformed cells: utility for studying gene regulation and analysis of potential therapeutic targets 
Arthritis Research  2002;4(Suppl 3):S215-S225.
Chapter summary
The elucidation of the signalling pathways involved in inflammatory diseases, such as rheumatoid arthritis, could provide long sought after targets for therapeutic intervention. Gene regulation is complex and varies depending on the cell type, as well as the signal eliciting gene activation. However, cells from certain lineages, such as macrophages, are specialised to degrade exogenous material and consequently do not easily transfect. Methods for high-efficiency gene transfer into primary cells of various lineages and disease states are desirable, as they remove the uncertainties associated with using transformed cell lines. Significant research has been undertaken into the development of nonviral and viral vectors for basic research, and as vehicles for gene therapy. We briefly review the current methods of gene delivery and the difficulties associated with each system. Adenoviruses have been used extensively to examine the role of various cytokines and signal transduction molecules in the pathogenesis of rheumatoid arthritis. This review will focus on the involvement of different signalling molecules in the production of tumour necrosis factor alpha by macrophages and in rheumatoid synovium. While the NF-κB pathway has proven to be a major mediator of tumour necrosis factor alpha production, it is not exclusive and work evaluating the involvement of other pathways is ongoing.
PMCID: PMC3240136  PMID: 12110141
adenovirus; gene transfer; macrophage; NF-κB; rheumatoid arthritis
24.  How does infliximab work in rheumatoid arthritis? 
Arthritis Research  2002;4(Suppl 2):S22-S28.
Since the initial characterization of tumor necrosis factor alpha (TNFα), it has become clear that TNFα has diverse biologic activity. The realization that TNFα plays a role in rheumatoid arthritis (RA) has led to the development of anti-TNF agents for the treatment of RA. Infliximab, a chimeric monoclonal antibody that specifically, and with high affinity, binds to TNFα and neutralizes the cytokine, is currently approved for the treatment of RA and Crohn's disease, another immune-inflammatory disorder. In addition to establishing the safety and efficacy of infliximab, clinical research has also provided insights into the complex cellular and cytokine-dependent pathways involved in the pathophysiology of RA, including evidence that supports TNFα involvement in cytokine regulation, cell recruitment, angiogenesis, and tissue destruction.
PMCID: PMC3238217  PMID: 12110154
infliximab; rheumatoid arthritis; signaling pathways; tumor necrosis factor
25.  Cytokine-stimulated T cells induce macrophage IL-10 production dependent on phosphatidylinositol 3-kinase and p70S6K: implications for rheumatoid arthritis 
Arthritis Research  2001;4(1):64-70.
IL-10 is an anti-inflammatory cytokine produced in the joint in rheumatoid arthritis by macrophages and infiltrating blood lymphocytes. Regulation of its expression is poorly understood, but previous findings have suggested that physical interactions with T cells may play a role. This report investigates signalling mechanisms involved in the production of macrophage IL-10 upon interaction with fixed, cytokine-stimulated T cells (Tck). Elutriated monocytes were differentiated to macrophages by macrophage-colony-stimulating factor (M-CSF) and co-cultured with fixed T cells chronically stimulated in a cytokine cocktail of IL-2/IL-6/tumour necrosis factor (TNF)-α in the presence or absence of wortmannin and LY294002, inhibitors of phosphatidylinositol 3-kinase (PI3K), or of rapamycin, an inhibitor of p70 S6-kinase (p70S6K). Spontaneous IL-10 production by rheumatoid arthritis synovial-membrane mononuclear cells (RA-SMCs) and co-cultures of rheumatoid arthritis T cells (RA-Ts) and macrophages was also assessed. RA-T and Tck induction of macrophage IL-10 production was suppressed by cell separation and inhibition of PI3K and p70S6K. PI3K involvement was also shown by phosphorylation of the downstream effector protein kinase B. Spontaneous IL-10 production by RA-SMCs was also inhibited by LY294002 and depletion of the nonadherent (T-cell-enriched) fraction of the cell population. IL-10 production in RA-SMCs and M-CSF-primed macrophages, activated by interaction with Tck, is PI3K- and p70S6K-dependent.
PMCID: PMC64854  PMID: 11879539
IL-10; macrophage; PI3K; rheumatoid arthritis; T cells

Results 1-25 (39)