PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-18 (18)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
Document Types
1.  Preferential Autoimmune Response in Prostate Cancer to Cyclin B1 in a Panel of Tumor-Associated Antigens 
Journal of Immunology Research  2014;2014:827827.
Previous studies have demonstrated that sera from patients with prostate cancer (PCa) contain autoantibodies that react with tumor-associated antigens (TAAs). Autoantibodies to cyclin B1 and fourteen other TAAs were detected by enzyme-linked immunosorbent assay (ELISA) and Western blotting in 464 sera from patients with PCa, benign prostatic hyperplasia (BPH), and other controls. Autoantibodies to cyclin B1 were detected in 31.0% of sera from randomly selected patients with PCa versus 4.8% in sera with BPH. In the further analysis, 31.4% of sera from PCa patients at the early stage contained anti-cyclin B1 autoantibody, and even 29.4% of patients who had normal prostate-specific antigen (PSA) levels in their serum samples were observed anti-cyclin B1 positive. The cumulative positive rate of autoantibodies against seven selected TAAs (cyclin B1, survivin, p53, DFS70/LEDGFp75, RalA, MDM2, and NPM1) in PCa reached 80.5%, significantly higher than that in normal control sera. In summary, autoantibody to cyclin B1 might be a potential biomarker for the immunodiagnosis of early stage PCa, especially useful in patients with normal PSA level. This study further supports the hypothesis that a customized TAA array can be used for enhancing anti-TAA autoantibody detection, and it may constitute a promising and powerful tool for immunodiagnosis of PCa.
doi:10.1155/2014/827827
PMCID: PMC4016862  PMID: 24860838
2.  The Stress Oncoprotein LEDGF/p75 Interacts with the Methyl CpG Binding Protein MeCP2 and Influences its Transcriptional Activity 
Molecular Cancer Research  2012;10(3):378-391.
The lens epithelium derived growth factor p75 (LEDGF/p75) is a transcription co-activator that promotes resistance to oxidative stress- and chemotherapy-induced cell death. LEDGF/p75 is also known as the dense fine speckles autoantigen of 70 kD (DFS70), and has been implicated in cancer, HIV-AIDS, autoimmunity, and inflammation. To gain insights into mechanisms by which LEDGF/p75 protects cancer cells against stress, we initiated an analysis of its interactions with other transcription factors and the influence of these interactions on stress gene activation. We report here that both LEDGF/p75 and its short splice variant LEDGF/p52 interact with MeCP2, a methylation-associated transcriptional modulator, in vitro and in various human cancer cells. These interactions were established by several complementary approaches: transcription factor protein arrays, pull down and AlphaScreen® assays, co-immunoprecipitation, and nuclear co-localization by confocal microscopy. MeCP2 was found to interact with the N-terminal region shared by LEDGF/p75 and p52, particularly with the PWWP-CR1 domain. Like LEDGF/p75, MeCP2 bound to and transactivated the Hsp27 promoter (Hsp27pr). LEDGF/p75 modestly enhanced MeCP2-induced Hsp27pr transactivation in U2OS cells, while this effect was more pronounced in PC3 cells. LEDGF/p52 repressed Hsp27pr activity in U2OS cells. Interestingly, siRNA-induced silencing of LEDGF/p75 in U2OS cells dramatically elevated MeCP2-mediated Hsp27pr transactivation, whereas this effect was less pronounced in PC3 cells depleted of LEDGF/p75. These results suggest that the LEDGF/p75-MeCP2 interaction differentially influences Hsp27pr activation depending on the cellular and molecular context. These findings are of significance in understanding the contribution of this interaction to the activation of stress survival genes.
doi:10.1158/1541-7786.MCR-11-0314
PMCID: PMC3312617  PMID: 22275515
LEDGF/p75; MeCP2; protein-protein interactions; PWWP domain; transcription
3.  Gingipain-dependent interactions with the host are important for survival of Porphyromonas gingivalis 
Frontiers in Bioscience  2008;13:3215-3238.
Porphyromonas gingivalis, a major periodontal pathogen, must acquire nutrients from host derived substrates, overcome oxidative stress and subvert the immune system. These activities can be coordinated via the gingipains which represent the most significant virulence factor produced by this organism. In the context of our contribution to this field, we will review the current understanding of gingipain biogenesis, glycosylation, and regulation, as well as discuss their role in oxidative stress resistance and apoptosis. We can postulate a model, in which gingipains may be part of the mechanism for P. gingivalis virulence.
PMCID: PMC3403687  PMID: 18508429
Porphyromonas gingivalis; gingipains; apoptosis; caspase-independent apoptosis; oxidative stress; VimA; anoikis; N-cadherin; VE-cadherin; integrin β1; VimA; VimE; VimF; DNA repair; glycosylation; virulence; host cell survival; HRgpA; RgpB; Kgp; Review
4.  Differential Expression of Peroxiredoxins in Prostate Cancer: Consistent Upregulation of PRDX3 and PRDX4 
The Prostate  2010;71(7):755-765.
Background
The peroxiredoxins (PRDXs) are emerging as regulators of antioxidant defense, apoptosis, and therapy resistance in cancer. Because their significance in prostate cancer (PCa) is unclear, we investigated their expression and clinical associations in PCa.
Methods
Transcript expression of PRDX1-6 in PCa was evaluated in cancer gene microarray datasets, whereas protein expression was evaluated by immunoblotting in prostate cell lines, and by immunohistochemistry (IHC) in prostate tissue microarrays (TMAs) containing tumor (n=80) and control (n=17) tissues. PRDX3 was also analyzed in TMAs containing PCa tissues from African-American and Caucasian patients (n=150 per group). PRDX expression was correlated with patients' clinicopathologic characteristics.
Results
Analysis of PRDX expression in cancer microarray datasets revealed consistent upregulation (tumor vs normal) of PRDX3 and 4. All PRDXs exhibited elevated protein expression in PCa cell lines, compared with non-tumor cells. IHC revealed significant overexpression of PRDX3 and 4 in PCa, associated with age, increased prostate specific antigen (PSA), tumor stage, or Gleason score. High PRDX3 staining was associated with early age and elevated Gleason score at time of radical prostatectomy in African-American but not in Caucasian patients with PCa. PSA recurrence free survival in patients with low PRDX3 tumor expression was significantly longer in Caucasians compared to African-Americans, but no difference was detected for high expression.
Conclusions
PRDXs exhibit differential expression in prostate tumors, with PRDX3 and 4 consistently upregulated. Their role in PCa development, and their potential as biological determinants of PCa health disparities and novel therapeutic targets, deserve further investigation.
doi:10.1002/pros.21292
PMCID: PMC3107902  PMID: 21031435
health disparities; oxidative stress; peroxiredoxins; prostate cancer; tissue microarrays
5.  Pathway Specific Gene Expression Profiling Reveals Oxidative Stress Genes Potentially Regulated by Transcription Co-Activator LEDGF/p75 in Prostate Cancer Cells 
The Prostate  2011;72(6):597-611.
BACKGROUND
Lens epithelium-derived growth factor p75 (LEDGF/p75) is a stress survival transcription co-activator and autoantigen that is overexpressed in tumors, including prostate cancer (PCa). This oncoprotein promotes resistance to cell death induced by oxidative stress and chemotherapy by mechanisms that remain unclear. To get insights into these mechanisms we identified candidate target stress genes of LEDGF/p75 using pathway-specific gene expression profiling in PCa cells.
METHODS
A “Human oxidative stress and antioxidant defense” qPCR array was used to identify genes exhibiting significant expression changes in response to knockdown or overexpression of LEDGF/p75 in PC-3 cells. Validation of array results was performed by additional qPCR and immunoblotting.
RESULTS
Cytoglobin (CYGB), Phosphoinositide-binding protein PIP3-E/IPCEF-1, superoxidase dismutase 3 (SOD3), thyroid peroxidase (TPO), and albumin (ALB) exhibited significant transcript down- and up-regulation in response to LEDGF/p75 knockdown and overexpression, respectively. CYGB gene was selected for further validation based on its emerging role as a stress oncoprotein in human malignancies. In light of previous reports indicating that LEDGF/p75 regulates peroxiredoxin 6 (PRDX6), and that PRDXs exhibit differential expression in PCa, we also examined the relationship between these proteins in PCa cells. Our validation data revealed that changes in LEDGF/p75 transcript and protein expression in PCa cells closely paralleled those of CYGB, but not those of the PRDXs.
CONCLUSIONS
Our study identifies CYGB and other genes as stress genes potentially regulated by LEDGF/p75 in PCa cells, and provides a rationale for investigating their role in PCa and in promoting resistance to chemotherapy- and oxidative stress-induced cell death.
doi:10.1002/pros.21463
PMCID: PMC3227744  PMID: 21796653
LEDGF/p75; prostate cancer; oxidative stress; gene profiling; peroxiredoxin; cytoglobin
6.  Expression of the Stress Response Oncoprotein LEDGF/p75 in Human Cancer: A Study of 21 Tumor Types 
PLoS ONE  2012;7(1):e30132.
Oxidative stress-modulated signaling pathways have been implicated in carcinogenesis and therapy resistance. The lens epithelium derived growth factor p75 (LEDGF/p75) is a transcription co-activator that promotes resistance to stress-induced cell death. This protein has been implicated in inflammatory and autoimmune conditions, HIV-AIDS, and cancer. Although LEDGF/p75 is emerging as a stress survival oncoprotein, there is scarce information on its expression in human tumors. The present study was performed to evaluate its expression in a comprehensive panel of human cancers. Transcript expression was examined in the Oncomine cancer gene microarray database and in a TissueScan Cancer Survey Panel quantitative polymerase chain reaction (Q-PCR) array. Protein expression was assessed by immunohistochemistry (IHC) in cancer tissue microarrays (TMAs) containing 1735 tissues representing single or replicate cores from 1220 individual cases (985 tumor and 235 normal tissues). A total of 21 major cancer types were analyzed. Analysis of LEDGF/p75 transcript expression in Oncomine datasets revealed significant upregulation (tumor vs. normal) in 15 out of 17 tumor types. The TissueScan Cancer Q-PCR array revealed significantly elevated LEDGF/p75 transcript expression in prostate, colon, thyroid, and breast cancers. IHC analysis of TMAs revealed significant increased levels of LEDGF/p75 protein in prostate, colon, thyroid, liver and uterine tumors, relative to corresponding normal tissues. Elevated transcript or protein expression of LEDGF/p75 was observed in several tumor types. These results further establish LEDGF/p75 as a cancer-related protein, and provide a rationale for ongoing studies aimed at understanding the clinical significance of its expression in specific human cancers.
doi:10.1371/journal.pone.0030132
PMCID: PMC3261859  PMID: 22276150
7.  Lipotoxicity Mediated Cell Dysfunction and Death Involves Lysosomal Membrane Permeabilization and Cathepsin L Activity 
Brain research  2010;1318C:133-143.
Lipotoxicity, which is triggered when cells are exposed to elevated levels of free fatty acids, involves cell dysfunction and apoptosis and is emerging as an underlying factor contributing to various pathological conditions including disorders of the central nervous system and diabetes. We have shown that palmitic acid (PA)-induced lipotoxicity (PA-LTx) in nerve growth factor-differentiated PC12 (NGFDPC12) cells is linked to an augmented state of cellular oxidative stress (ASCOS) and apoptosis, and that these events are inhibited by docosahexanoic acid (DHA). The mechanisms of PA-LTx in nerve cells are not well understood, but our previous findings indicate that it involves ROS generation, mitochondrial membrane permeabilization (MMP), and caspase activation. The present study used nerve growth factor differentiated PC12 cells (NGFDPC12 cells) and found that lysosomal membrane permeabilization (LMP) is an early event during PA-induced lipotoxicity that precedes MMP and apoptosis. Cathepsin L, but not cathepsin B, is an important contributor in this process since its pharmacological inhibition significantly attenuated LMP, MMP, and apoptosis. In addition, co-treatment of NGFDPC12 cells undergoing lipotoxicity with DHA significantly reduced LMP, suggesting that DHA acts by antagonizing upstream signals leading to lysosomal dysfunction. These results suggest that LMP is a key early mediator of lipotoxicity, and underscore the value of interventions targeting upstream signals leading to LMP for the treatment of pathological conditions associated with lipotoxicity.
doi:10.1016/j.brainres.2009.12.038
PMCID: PMC2829674  PMID: 20043885
apoptosis; cathepsin L; docosahexanoic acid; lipotoxicity; lysosomal dysfunction
8.  Tumor-associated Antigen Arrays for the Serological Diagnosis of Cancer* 
The recognition that human tumors stimulate the production of autoantibodies against autologous cellular proteins called tumor-associated antigens (TAAs) has opened the door to the possibility that autoantibodies could be exploited as serological tools for the early diagnosis and management of cancer. Cancer-associated autoantibodies are often driven by intracellular proteins that are mutated, modified, or aberrantly expressed in tumor cells and hence are regarded as immunological reporters that could help uncover molecular events underlying tumorigenesis. Emerging evidence suggests that each type of cancer might trigger unique autoantibody signatures that reflect the nature of the malignant process in the affected organ. The advent of novel genomic, proteomic, and high throughput approaches has accelerated interest in the serum autoantibody repertoire in human cancers for the discovery of candidate TAAs. The use of individual anti-TAA autoantibodies as diagnostic or prognostic tools has been tempered by their low frequency and heterogeneity in most human cancers. However, TAA arrays comprising several antigens significantly increase this frequency and hold great promise for the early detection of cancer, monitoring cancer progression, guiding individualized therapeutic interventions, and identification of novel therapeutic targets. Our recent studies suggest that the implementation of TAA arrays in screening programs for the diagnosis of prostate cancer and other cancers should be preceded by the optimization of their sensitivity and specificity through the careful selection of the most favorable combinations of TAAs.
doi:10.1074/mcp.R600010-MCP200
PMCID: PMC2790463  PMID: 16733262
9.  Alternative Splicing and Caspase-Mediated Cleavage Generate Antagonistic Variants of the Stress Oncoprotein LEDGF/p75 
Molecular cancer research : MCR  2008;6(8):1293-1307.
There is increasing evidence that an augmented state of cellular oxidative stress modulates the expression of stress genes implicated in diseases associated with health disparities such as certain cancers and diabetes. Lens epithelium–derived growth factor p75 (LEDGF/p75), also known as DFS70 autoantigen, is emerging as a survival oncoprotein that promotes resistance to oxidative stress–induced cell death and chemotherapy. We previously showed that LEDGF/p75 is targeted by autoantibodies in prostate cancer patients and is overexpressed in prostate tumors, and that its stress survival activity is abrogated during apoptosis. LEDGF/p75 has a COOH-terminally truncated splice variant, p52, whose role in stress survival and apoptosis has not been thoroughly investigated. We observed unbalanced expression of these proteins in a panel of tumor cell lines, with LEDGF/p75 generally expressed at higher levels. During apoptosis, caspase-3 cleaved p52 to generate a p38 fragment that lacked the NH2-terminal PWWP domain and failed to transactivate the Hsp27 promoter in reporter assays. However, p38 retained chromatin association properties and repressed the transactivation potential of LEDGF/p75. Overexpression of p52 or its variants with truncated PWWP domains in several tumor cell lines induced apoptosis, an activity that was linked to the presence of an intron-derived COOH-terminal sequence. These results implicate the PWWP domain of p52 in transcription function but not in chromatin association and proapoptotic activities. Consistent with their unbalanced expression in tumor cells, LEDGF/p75 and p52 seem to play antagonistic roles in the cellular stress response and could serve as targets for novel antitumor therapies.
doi:10.1158/1541-7786.MCR-08-0125
PMCID: PMC2790462  PMID: 18708362
10.  Activation and Reversal of Lipotoxicity in PC12 and Rat Cortical Cells Following Exposure to Palmitic Acid 
Journal of neuroscience research  2009;87(5):1207-1218.
Lipotoxicity involves a series of pathological cellular responses after exposure to elevated levels of fatty acids. This process may be detrimental to normal cellular homeostasis and cell viability. The present study shows that nerve growth factor-differentiated PC12 cells (NGFDPC12) and rat cortical cells (RCC) exposed to high levels of palmitic acid (PA) exhibit significant lipotoxicity and death linked to an “augmented state of cellular oxidative stress” (ASCOS). The ASCOS response includes generation of reactive oxygen species (ROS), alterations in the mitochondrial transmembrane potential, and increase in the mRNA levels of key cell death/survival regulatory genes. The observed cell death was apoptotic based on nuclear morphology, caspase-3 activation, and cleavage of lamin B and PARP. Quantitative real-time PCR measurements showed that cells undergoing lipotoxicity exhibited an increase in the expression of the mRNAs encoding the cell death-associated proteins BNIP3 and FAS receptor. Cotreatment of NGFDPC12 and RCC cells undergoing lipotoxicity with docosahexaenoic acid (DHA) and bovine serum albumin (BSA) significantly reduced cell death within the first 2 hr following the initial exposure to PA. The data suggest that lipotoxicity in NGFDPC12 and cortical neurons triggers a strong cell death apoptotic response. Results with NGFDPC12 cells suggest a linkage between induction of ASCOS and the apoptotic process and exhibit a temporal window that is sensitive to DHA and BSA interventions.
doi:10.1002/jnr.21918
PMCID: PMC2767231  PMID: 18951473
ASCOS; DHA; hypoxia/ischemia; lipotoxicity; neurotoxicity; traumatic brain injury
11.  Docetaxel-induced prostate cancer cell death involves concomitant activation of caspase and lysosomal pathways and is attenuated by LEDGF/p75 
Molecular Cancer  2009;8:68.
Background
Hormone-refractory prostate cancer (HRPC) is characterized by poor response to chemotherapy and high mortality, particularly among African American men when compared to other racial/ethnic groups. It is generally accepted that docetaxel, the standard of care for chemotherapy of HRPC, primarily exerts tumor cell death by inducing mitotic catastrophe and caspase-dependent apoptosis following inhibition of microtubule depolymerization. However, there is a gap in our knowledge of mechanistic events underlying docetaxel-induced caspase-independent cell death, and the genes that antagonize this process. This knowledge is important for circumventing HRPC chemoresistance and reducing disparities in prostate cancer mortality.
Results
We investigated mechanistic events associated with docetaxel-induced death in HRPC cell lines using various approaches that distinguish caspase-dependent from caspase-independent cell death. Docetaxel induced both mitotic catastrophe and caspase-dependent apoptosis at various concentrations. However, caspase activity was not essential for docetaxel-induced cytotoxicity since cell death associated with lysosomal membrane permeabilization still occurred in the presence of caspase inhibitors. Partial inhibition of docetaxel-induced cytotoxicity was observed after inhibition of cathepsin B, but not inhibition of cathepsins D and L, suggesting that docetaxel induces caspase-independent, lysosomal cell death. Simultaneous inhibition of caspases and cathepsin B dramatically reduced docetaxel-induced cell death. Ectopic expression of lens epithelium-derived growth factor p75 (LEDGF/p75), a stress survival autoantigen and transcription co-activator, attenuated docetaxel-induced lysosomal destabilization and cell death. Interestingly, LEDGF/p75 overexpression did not protect cells against DTX-induced mitotic catastrophe, and against apoptosis induced by tumor necrosis factor related apoptosis inducing ligand (TRAIL), suggesting selectivity in its pro-survival activity.
Conclusion
These results underscore the ability of docetaxel to induce concomitantly caspase-dependent and independent death pathways in prostate cancer cells. The results also point to LEDGF/p75 as a potential contributor to cellular resistance to docetaxel-induced lysosomal destabilization and cell death, and an attractive candidate for molecular targeting in HRPC.
doi:10.1186/1476-4598-8-68
PMCID: PMC2741463  PMID: 19715609
12.  The Human Papillomavirus 16 E6 Protein Can Either Protect or Further Sensitize Cells to TNF: Effect of Dose (HPV E6 Sensitizes and Protects Cells from TNF) 
Cell death and differentiation  2005;12(12):1622-1635.
High-risk strains of human papillomavirus, including HPV 16, cause human cervical carcinomas, due in part to the activity of their E6 oncogene. E6 interacts with a number of cellular proteins involved in host-initiated apoptotic responses. Paradoxically, literature reports show that E6 can both protect cells from and sensitize cells to TNF. To examine this apparent contradiction, E6 was transfected into U2OS cells and stable clones were treated with TNF. Intriguingly, clones with a high level of E6 expression displayed an increased sensitivity to TNF by undergoing apoptosis, while those with low expression were resistant. Furthermore, TNF treatment of cells in which the expression of E6 was regulated by the addition of doxycycline demonstrated clearly that while low levels of E6 protect cells from TNF, high levels sensitize cells. Together, these results demonstrate that virus-host interactions can be complex and that both quantitative and qualitative aspects are important in determining outcome.
doi:10.1038/sj.cdd.4401678
PMCID: PMC1615884  PMID: 15933739
Apoptosis; HPV 16; E6; TNF; caspase activation; dose-dependence
13.  Gingipains from Porphyromonas gingivalis W83 Synergistically Disrupt Endothelial Cell Adhesion and Can Induce Caspase-Independent Apoptosis  
Infection and Immunity  2006;74(10):5667-5678.
We have shown previously that gingipains from Porphyromonas gingivalis W83 can induce cell detachment, cell adhesion molecule (CAM) cleavage, and apoptosis in endothelial cells; however, the specific roles of the individual gingipains are unclear. Using purified gingipains, we determined that each of the gingipains can cleave CAMs to varying degrees with differing kinetics. Kgp and HRgpA work together to quickly detach endothelial cells. Interestingly, in the absence of active caspases, both gingipain-active W83 extracts and purified HRgpA and RgpB induce apoptotic morphology, suggesting that the gingipains can induce both caspase-dependent and caspase-independent apoptosis. Using z-VAD-FMK to inhibit Kgp activity and leupeptin to inhibit Rgp activity in gingipain-active W83 extracts, we investigated the relative significance of the synergistic role of the gingipains. z-VAD-FMK or leupeptin delayed, but did not inhibit, cell detachment induced by gingipain-active W83 extracts or purified gingipains. There was partial cleavage of N-cadherin and cleavage of VE-cadherin was not inhibited. Degradation of integrin β1 was inhibited only in the presence of z-VAD-FMK. These results further clarify the role P. gingivalis plays in tissue destruction occurring in the periodontal pocket.
doi:10.1128/IAI.01140-05
PMCID: PMC1594922  PMID: 16988242
14.  Gingipains from Porphyromonas gingivalis W83 Induce Cell Adhesion Molecule Cleavage and Apoptosis in Endothelial Cells  
Infection and Immunity  2005;73(3):1543-1552.
The presence of Porphyromonas gingivalis in the periodontal pocket and the high levels of gingipain activity detected in gingival crevicular fluid could implicate a role for gingipains in the destruction of the highly vascular periodontal tissue. To explore the effects of these proteases on endothelial cells, we exposed bovine coronary artery endothelial cells and human microvascular endothelial cells to gingipain-active extracellular protein preparations and/or purified gingipains from P. gingivalis. Treated cells exhibited a rapid loss of cell adhesion properties that was followed by apoptotic cell death. Cleavage of N- and VE-cadherin and integrin β1 was observed in immunoblots of cell lysates. There was a direct correlation between the kinetics of cleavage of N- and VE-cadherin and loss of cell adhesion properties. Loss of cell adhesion, as well as N- and VE-cadherin and integrin β1 cleavage, could be inhibited or significantly delayed by preincubation of P. gingivalis W83 gingipain-active extracellular extracts with the cysteine protease inhibitor Nα-p-tosyl-l-lysine chloromethylketone. Furthermore, purified gingipains also induced endothelial cell detachment and apoptosis. Apoptosis-associated events, including annexin V positivity, caspase-3 activation, and cleavage of the caspase substrates poly(ADP-ribose) polymerase and topoisomerase I (Topo I), were observed in endothelial cells after detachment. All of the effects observed were correlated with the different levels of cysteine-dependent proteolytic activity of the extracts tested. Taken together, these results indicate that gingipains from P. gingivalis can alter cell adhesion molecules and induce endothelial cell death, which could have implications for the pathogenicity of this organism.
doi:10.1128/IAI.73.3.1543-1552.2005
PMCID: PMC1064927  PMID: 15731052
15.  Fragmentation of Golgi complex and Golgi autoantigens during apoptosis and necrosis 
Arthritis Research  2002;4(4):R3.
Anti-Golgi complex autoantibodies are found primarily in patients with Sjögren's syndrome and systemic lupus erythematosus, although they are not restricted to these diseases. Several Golgi autoantigens have been identified that represent a small family of proteins. Common features of all Golgi autoantigens appear to be their distinct structural organization of multiple α-helical coiled-coil rods in the central domains flanked by non-coiled-coil N-termini and C-termini, and their localization to the cytoplasmic face of Golgi cisternae. Many autoantigens in systemic autoimmune diseases have distinct cleavage products in apoptosis or necrosis and this has raised the possibility that cell death may play a role in the generation of potentially immunostimulatory forms of autoantigens. In the present study, we examined changes in the Golgi complex and associated autoantigens during apoptosis and necrosis. Immunofluorescence analysis showed that the Golgi complex was altered and developed distinctive characteristics during apoptosis and necrosis. In addition, immunoblotting analysis showed the generation of antigenic fragments of each Golgi autoantigen, suggesting that they may play a role in sustaining autoantibody production. Further studies are needed to determine whether the differences observed in the Golgi complex during apoptosis or necrosis may account for the production of anti-Golgi complex autoantibodies.
doi:10.1186/ar422
PMCID: PMC125295  PMID: 12106502
anti-Golgi complex antibody; autoantibody; autoimmunity; cell death
16.  Ordering the Cytochrome c–initiated Caspase Cascade: Hierarchical Activation of Caspases-2, -3, -6, -7, -8, and -10 in a Caspase-9–dependent Manner  
The Journal of Cell Biology  1999;144(2):281-292.
Exit of cytochrome c from mitochondria into the cytosol has been implicated as an important step in apoptosis. In the cytosol, cytochrome c binds to the CED-4 homologue, Apaf-1, thereby triggering Apaf-1–mediated activation of caspase-9. Caspase-9 is thought to propagate the death signal by triggering other caspase activation events, the details of which remain obscure. Here, we report that six additional caspases (caspases-2, -3, -6, -7, -8, and -10) are processed in cell-free extracts in response to cytochrome c, and that three others (caspases-1, -4, and -5) failed to be activated under the same conditions. In vitro association assays confirmed that caspase-9 selectively bound to Apaf-1, whereas caspases-1, -2, -3, -6, -7, -8, and -10 did not. Depletion of caspase-9 from cell extracts abrogated cytochrome c–inducible activation of caspases-2, -3, -6, -7, -8, and -10, suggesting that caspase-9 is required for all of these downstream caspase activation events. Immunodepletion of caspases-3, -6, and -7 from cell extracts enabled us to order the sequence of caspase activation events downstream of caspase-9 and reveal the presence of a branched caspase cascade. Caspase-3 is required for the activation of four other caspases (-2, -6, -8, and -10) in this pathway and also participates in a feedback amplification loop involving caspase-9.
PMCID: PMC2132895  PMID: 9922454
Apaf-1; apoptosis; caspases; cell-free; cytochrome c
17.  Granule-mediated Killing: Pathways for Granzyme B–initiated Apoptosis  
The Journal of Experimental Medicine  1997;186(8):1323-1331.
We report that the serine protease granzyme B (GrB), which is crucial for granule-mediated cell killing, initiates apoptosis in target cells by first maturing caspase-10. In addition, GrB has a limited capacity to mature other caspases and to cause cell death independently of the caspases. Compared with other members, GrB in vitro most efficiently processes caspase-7 and -10. In a human cell model, full maturation of caspase-7 does not occur unless caspase-10 is present. Furthermore, GrB matured caspase-3 with less efficiency than caspase-7 or caspase-10. With the caspases fully inactivated by peptidic inhibitors, GrB induced in Jurkat cells growth arrest and, over a delayed time period, cell death. Thus, the primary mechanism by which GrB initiates cell death is activation of the caspases through caspase-10. However, under circumstances where caspase-10 is absent or dysfunctional, GrB can act through secondary mechanisms including activation of other caspases and direct cell killing by cleavage of noncaspase substrates. The redundant functions of GrB ensure the effectiveness of granule-mediated cell killing, even in target cells that lack the expression or function (e.g., by mutation or a viral serpin) of one or more of the caspases, providing the host with overlapping safeguards against aberrantly replicating, nonself or virally infected cells.
PMCID: PMC2199091  PMID: 9334372
18.  Establishment of a Cell-Free System of Neuronal Apoptosis: Comparison of Premitochondrial, Mitochondrial, and Postmitochondrial Phases 
The Journal of Neuroscience  1997;17(16):6165-6178.
Apoptosis is a fundamental process required for normal development of the nervous system and is triggered during neurodegenerative disease. To dissect the molecular events leading to neuronal cell death, we have developed a cell-free model of neuronal apoptosis. The model faithfully reproduces key elements of apoptosis, including chromatin condensation, DNA fragmentation, caspase activation/processing, and selective substrate cleavage. We report that cell-free apoptosis is activated in premitochondrial, mitochondrial, and postmitochondrial phases by tamoxifen, mastoparan, and cytochromec, respectively, allowing a functional ordering of these proapoptotic modulators. Furthermore, this is the first report of mitochondrial-mediated activation of cell-free apoptosis in a cell extract. Although Bcl-2 blocks activation at the premitochondrial and mitochondrial levels, it does not affect the postmitochondrial level. The cell-free system described here provides a valuable tool to elucidate the molecular events leading to neuronal cell death.
PMCID: PMC3913837  PMID: 9236228
caspase; protease; apoptosis; cell-free; mitochondria; mastoparan; neuronal

Results 1-18 (18)