PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("scertf, Gaia")
1.  Autism, language and communication in children with sex chromosome trisomies 
Archives of disease in childhood  2010;96(10):954-959.
Purpose
Sex chromosome trisomies (SCTs) are found on amniocentesis in 2.3–3.7 per 1000 same-sex births, yet there is a limited database on which to base a prognosis. Autism has been described in postnatally diagnosed cases of Klinefelter syndrome (XXY karyotype), but the prevalence in non-referred samples, and in other trisomies, is unclear. The authors recruited the largest sample including all three SCTs to be reported to date, including children identified on prenatal screening, to clarify this issue.
Design
Parents of children with a SCT were recruited either via prenatal screening or via a parental support group, to give a sample of 58 XXX, 19 XXY and 58 XYY cases. Parents were interviewed using the Vineland Adaptive Behavior Scales and completed questionnaires about the communicative development of children with SCTs and their siblings (42 brothers and 26 sisters).
Results
Rates of language and communication problems were high in all three trisomies. Diagnoses of autism spectrum disorder (ASD) were found in 2/19 cases of XXY (11%) and 11/58 XYY (19%). After excluding those with an ASD diagnosis, communicative profiles indicative of mild autistic features were common, although there was wide individual variation.
Conclusions
Autistic features have not previously been remarked upon in studies of non-referred samples with SCTs, yet the rate is substantially above population levels in this sample, even when attention is restricted to early-identified cases. The authors hypothesise that X-linked and Y-linked neuroligins may play a significant role in the aetiology of communication impairments and ASD.
doi:10.1136/adc.2009.179747
PMCID: PMC3182523  PMID: 20656736
2.  Effects of Motivation and Medication on Electrophysiological Markers of Response Inhibition in Children with Attention-Deficit/Hyperactivity Disorder 
Biological Psychiatry  2010;67(7):624-631.
Background
Theories of attention-deficit/hyperactivity disorder (ADHD) posit either executive deficits and/or alterations in motivational style and reward processing as core to the disorder. Effects of motivational incentives on electrophysiological correlates of inhibitory control and relationships between motivation and stimulant medication have not been explicitly tested.
Methods
Children (9–15 years) with combined-type ADHD (n = 28) and matched typically developing children (CTRL) (n = 28) performed a go/no-go task. Electroencephalogram data were recorded. Amplitude of two event-related potentials, the N2 and P3 (markers of response conflict and attention), were measured. The ADHD children were all stimulant responders tested on and off their usual dose of methylphenidate; CTRLs were never medicated. All children performed the task under three motivational conditions: reward; response cost; and baseline, in which points awarded/deducted for inhibitory performance varied.
Results
There were effects of diagnosis (CTRL > ADHD unmedicated), medication (on > off), and motivation (reward and/or response cost > baseline) on N2 and P3 amplitude, although the N2 diagnosis effect did not reach statistical significance (p = .1). Interactions between motivation and diagnosis/medication were nonsignificant (p > .1).
Conclusions
Motivational incentives increased amplitudes of electrophysiological correlates of response conflict and attention in children with ADHD, towards the baseline (low motivation) amplitudes of control subjects. These results suggest that, on these measures, motivational incentives have similar effects in children with ADHD as typically developing CTRLs and have additive effects with stimulant medication, enhancing stimulus salience and allocation of attentional resources during response inhibition.
doi:10.1016/j.biopsych.2009.09.029
PMCID: PMC2845810  PMID: 19914599
ADHD; electrophysiology; motivation; response inhibition; stimulant medication
3.  Cortical Gray Matter in Attention-Deficit/Hyperactivity Disorder: A Structural Magnetic Resonance Imaging Study 
Objective
Previous studies have shown smaller brain volume and less gray matter in children with attention-deficit/hyperactivity disorder (ADHD). Relatively few morphological studies have examined structures thought to subserve inhibitory control, one of the diagnostic features of ADHD. We examined one such region, the pars opercularis, predicting a thinner cortex of the inferior frontal gyrus (IFG) in children with ADHD.
Method
Structural images were obtained from 49 children (24 control; 25 ADHD combined subtype) aged 9 though 15 years. Images were processed using a volumetric pipeline to provide a fully automated estimate of regional volumes of gray and white matter. A further analysis using FreeSurfer provided measures of cortical thickness for each lobe, and for 13 regions in the frontal lobe.
Results
Relative to controls, children with ADHD had smaller whole brain volume and lower gray matter, but not white matter, volumes in all lobes. An analysis of frontal regions showed a significant interaction of group by region. Planned contrasts showed bilateral thinner cortex in the pars opercularis in children with ADHD.
Conclusions
Children with ADHD showed both diffuse and regional gray matter abnormalities. Consistent with its putative role in response inhibition, the cortex of the pars opercularis was thinner in children with ADHD who, as expected, had significantly poorer inhibitory performance on a Go/No-go task. These differences held for both hemispheres raising the possibility that a developmental abnormality of IFG might drive development of inhibition difficulties.
doi:10.1016/j.jaac.2009.11.008
PMCID: PMC2829134  PMID: 20410712
Attention-deficit/hyperactivity disorder; MRI; Cortical thickness; Inferior frontal gyrus; Gray matter
4.  Applying an Attentional Set to Perceived and Remembered Features 
PLoS ONE  2009;4(10):e7613.
Previous research has examined our ability to attend selectively to particular features of perceptual objects, as well as our ability to switch from attending to one type of feature to another. This is usually done in the context of anticipatory attentional-set control, comparing the neural mechanisms involved as participants prepare to attend to the same stimulus feature as on the previous trial (“task-stay” trials) with those required as participants prepare to attend to a different stimulus feature to that previously attended (“task-switch” trials). We wanted to establish how participants maintain or switch attentional set retrospectively, as they attend to features of objects held in visual short-term memory (VSTM). We found that switching, relative to maintaining attentional set retrospectively, was associated with a performance cost, which can be reduced over time. This control process was mirrored by a large parietal and frontal amplitude difference in the event-related brain potentials (ERPs) and significant differences in global field power (GFP) between switch and stay trials. However, when taking into account the switch/stay GFP differences, thereby controlling for this difference in amplitude, we could not distinguish these trial types topographically. By contrast, we found clear topographic differences between preparing an anticipatory feature-based attentional set versus applying it retrospectively within VSTM. These complementary topographical and amplitude analyses suggested that anticipatory and retrospective set control recruited a qualitatively different configuration of underlying neural generators. In contrast, switch/stay differences were largely quantitative, with them differing primarily in terms of amplitude rather than topography.
doi:10.1371/journal.pone.0007613
PMCID: PMC2764142  PMID: 19898613
5.  Looking before you leap: A theory of motivated control of action 
Cognition  2009;112(1):141-158.
The acquisition of volitional control depends, in part, on developing the ability to countermand a planned action. Many tasks have been used to tap the efficiency of this process, but few studies have investigated how it may be modulated by participants’ motivation. Multiple mechanisms may be involved in the deliberate exercise of caution when incentives are provided. For example, control may involve modulation of the efficiency of the countermanding process, and/or inhibitory modulation of the impulse to go. One of the most commonly used paradigms to assess control of action is the Stop Signal Task, in which a primary Go stimulus is occasionally followed by a countermanding Stop signal, allowing a Stop Signal Reaction Time (SSRT) to be inferred as the outcome of a “horse race” between the go and countermanding processes. Here, we present a computational model in which high task motivation modulates proactive pre-stimulus inhibition of the go response. This allows responses to be calibrated so as to fall within a time-window that maximizes the probability of success, regardless of trial type, but does not decrease the observed SSRT. We report empirical support for the model from a sample of typically developing children, and discuss the broader implications for operationalizing measures of volitional control.
doi:10.1016/j.cognition.2009.03.006
PMCID: PMC2706947  PMID: 19409540
Inhibition; Motivation; Stop Signal Reaction Time; Restraint; Control of action
6.  Delineation of early attentional control difficulties in fragile X syndrome: Focus on neurocomputational changes 
Neuropsychologia  2007;45(8):1889-1898.
Fragile X syndrome (FXS) is due to the silencing of a single X-linked gene and it is associated with striking attentional difficulties. As FXS is well characterized at the cellular level, the condition provides a unique opportunity to investigate how a genetic dysfunction can impact on the development of neurocomputational properties relevant to attention. Thirteen young boys with FXS and thirteen mental-age-matched typically developing controls performed a touch-screen-based search task that manipulated the similarity between targets and distractors and their heterogeneity in size. Search speed, path and errors were recorded as multiple measures of performance. Children did not differ in overall search speed or path when searching amongst distractors, but striking error patterns distinguished children with FXS from controls. Firstly, although clear markers of previously found targets remained on screen, children with FXS perseverated on touching previous hits more than typically developing controls, consistent with the well-documented inhibitory deficits in adults with the disorder. Secondly, they could accurately discriminate single target-distractor pairs, but, when searching a complex display, they touched distractors more often than control children when distractors were similar to targets and especially so when these were infrequent, highlighting difficulties in judging relative size and allocate attentional weight independently of stimulus frequency. Thirdly, their performance was also characterized by inaccuracies in pointing, suggesting additional motor control deficits. Taken together, the findings suggest that fragile X syndrome affects the early development of multiple processes contributing to efficient attentional selection, as would be predicted from an understanding of the neurocomputational changes associated with the disorder.
doi:10.1016/j.neuropsychologia.2006.12.005
PMCID: PMC2613507  PMID: 17254617
atypical development; attentional control; neurocomputational changes
7.  Spatial Selection of Features within Perceived and Remembered Objects 
Our representation of the visual world can be modulated by spatially specific attentional biases that depend flexibly on task goals. We compared searching for task-relevant features in perceived versus remembered objects. When searching perceptual input, selected task-relevant and suppressed task-irrelevant features elicited contrasting spatiotopic ERP effects, despite them being perceptually identical. This was also true when participants searched a memory array, suggesting that memory had retained the spatial organization of the original perceptual input and that this representation could be modulated in a spatially specific fashion. However, task-relevant selection and task-irrelevant suppression effects were of the opposite polarity when searching remembered compared to perceived objects. We suggest that this surprising result stems from the nature of feature- and object-based representations when stored in visual short-term memory. When stored, features are integrated into objects, meaning that the spatially specific selection mechanisms must operate upon objects rather than specific feature-level representations.
doi:10.3389/neuro.09.006.2009
PMCID: PMC2679200  PMID: 19434243
spatial attention; visual short-term memory; working memory; ERPs; electrophysiology; task-set control
8.  Delineation of early attentional control difficulties in fragile X syndrome: Focus on neurocomputational changes 
Neuropsychologia  2007;45(8-4):1889-1898.
Fragile X syndrome (FXS) is due to the silencing of a single X-linked gene and it is associated with striking attentional difficulties. As FXS is well characterised at the cellular level, the condition provides a unique opportunity to investigate how a genetic dysfunction can impact on the development of neurocomputational properties relevant to attention. Thirteen young boys with FXS and 13 mental-age-matched typically developing controls performed a touch-screen-based search task that manipulated the similarity between targets and distractors and their heterogeneity in size. Search speed, path and errors were recorded as multiple measures of performance. Children did not differ in overall search speed or path when searching amongst distractors, but striking error patterns distinguished children with FXS from controls. Firstly, although clear markers of previously found targets remained on screen, children with FXS perseverated on touching previous hits more than typically developing controls, consistent with the well-documented inhibitory deficits in adults with the disorder. Secondly, they could accurately discriminate single target-distractor pairs, but, when searching a complex display, they touched distractors more often than control children when distractors were similar to targets and especially so when these were infrequent, highlighting difficulties in judging relative size and allocate attentional weight independently of stimulus frequency. Thirdly, their performance was also characterised by inaccuracies in pointing, suggesting additional motor control deficits. Taken together, the findings suggest that fragile X syndrome affects the early development of multiple processes contributing to efficient attentional selection, as would be predicted from an understanding of the neurocomputational changes associated with the disorder.
doi:10.1016/j.neuropsychologia.2006.12.005
PMCID: PMC2613507  PMID: 17254617
Atypical development; Attentional control; Neurocomputational changes
9.  Neurocognitive outcomes of individuals with a sex chromosome trisomy: XXX, XYY, or XXY: a systematic review* 
Aim
To review systematically the neurodevelopmental characteristics of individuals with sex chromosome trisomies (SCTs).
Method
A bibliographic search identified English-language articles on SCTs. The focus was on studies unbiased by clinical referral, with power of at least 0.69 to detect an effect size of 1.0.
Results
We identified 35 articles on five neonatally identified samples that had adequate power for our review. An additional 11 studies were included where cases had been identified for reasons other than neurodevelopmental concerns. Individuals with an additional X chromosome had mean IQs that were within broadly normal limits but lower than the respective comparison groups, with verbal IQ most affected. Cognitive outcomes were poorest for females with XXX. Males with XYY had normal-range IQs, but all three SCT groups (XXX, XXY, and XYY) had marked difficulties in speech and language, motor skills, and educational achievement. Nevertheless, most adults with SCTs lived independently. Less evidence was available for brain structure and for attention, social, and psychiatric outcomes. Within each group there was much variation.
Interpretation
Individuals with SCTs are at risk of cognitive and behavioural difficulties. However, the evidence base is slender, and further research is needed to ascertain the nature, severity, and causes of these difficulties in unselected samples.
doi:10.1111/j.1469-8749.2009.03545.x
PMCID: PMC2820350  PMID: 20059514
10.  Klinefelter syndrome as a window on the aetiology of language and communication impairments in children: the neuroligin–neurexin hypothesis 
Aim
To compare the phenotype in Klinefelter syndrome (KS) with (i) specific language impairment (SLI) and (ii) XXX and XYY trisomies.
Methods
Phenotypes of KS, XXX and XYY were based on data from a systematic review of neurodevelopmental outcomes plus a recent parent survey. Phenotype of SLI was based on a published survey of children attending a special school.
Results
There are close similarities between the KS phenotype and SLI. Furthermore, a minority of children with KS have features of autistic spectrum disorder. Similar language and communication problems are seen in the other two sex chromosome trisomies (SCTs), XXX and XYY.
Conclusion
We propose the neurexin–neuroligin hypothesis, based on the observation that neuroligin genes, which occur on both X and Y chromosomes, are involved in the same synaptic networks as neurexin genes with common variants that affect risk for SLI and autism. According to our hypothesis, the effect of a triple dose of neuroligin gene product will be particularly detrimental when it occurs in conjunction with specific variants of neurexin genes on other chromosomes. This speculative proposal demonstrates the potential of illuminating the aetiology of common neurodevelopmental disorders by studying children with SCTs.
doi:10.1111/j.1651-2227.2011.02150.x
PMCID: PMC3107947  PMID: 21418292
Autism; Klinefelter syndrome; Language impairment; Neurexin; Neuroligin; Sex chromosome trisomy
11.  Motivational incentives and methylphenidate enhance electrophysiological correlates of error monitoring in children with attention deficit/hyperactivity disorder 
Background Children with attention deficit hyperactivity disorder (ADHD) are characterised by developmentally inappropriate levels of hyperactivity, impulsivity and/or inattention and are particularly impaired when performing tasks that require a high level of cognitive control. Methylphenidate (MPH) and motivational incentives may help improve cognitive control by enhancing the ability to monitor response accuracy and regulate performance accordingly.
Methods Twenty-eight children with DSM-IV ADHD (combined type) aged 9–15 years and pairwise-matched typically developing children (CTRL) performed a go/no-go task in which the incentives attached to performance on no-go trials were manipulated. The ADHD group performed the task off and on their usual dose of MPH. CTRL children performed the task twice but were never medicated. EEG data were recorded simultaneously and two electrophysiological indices of error monitoring, the error-related negativity (ERN) and error positivity (Pe) were measured. Amplitudes of each ERP were compared between diagnostic groups (CTRL, ADHD), medication days (Off MPH, On MPH) and motivational conditions (baseline – low incentive, reward, response cost).
Results Error rates were lower in the reward and response cost conditions compared with baseline across diagnostic groups and medication days. ERN and Pe amplitudes were significantly reduced in ADHD compared with CTRL, and were significantly enhanced by MPH. Incentives significantly increased ERN and Pe amplitudes in the ADHD group but had no effect in CTRL. The effects of incentives did not interact with the effects of MPH on either ERP. Effect sizes were computed and revealed larger effects of MPH than incentives on ERN and Pe amplitudes.
Conclusions The findings reveal independent effects of motivational incentives and MPH on two electrophysiological markers of error monitoring in children with ADHD, suggesting that each may be important tools for enhancing or restoring cognitive control in these children.
doi:10.1111/jcpp.12069
PMCID: PMC3807603  PMID: 23662815
ADHD; electrophysiology; error monitoring; motivation; methylphenidate; stimulant medication

Results 1-11 (11)