PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  A novel recurrent mutation in ATP1A3 causes CAPOS syndrome 
Background
We undertook genetic analysis of three affected families to identify the cause of dominantly-inherited CAPOS (cerebellar ataxia, areflexia, pes cavus, optic atrophy and sensorineural hearing loss) syndrome.
Methods
We used whole-exome sequencing to analyze two families affected with CAPOS syndrome, including the original family reported in 1996, and Sanger sequencing to assess familial segregation of rare variants identified in the probands and in a third, apparently unrelated family with CAPOS syndrome.
Results
We found an identical heterozygous missense mutation, c.2452G > A (p.(Glu818Lys)), in the Na+/K+ ATPase α3(ATP1A3) gene in the proband and his affected sister and mother, but not in either unaffected maternal grandparent, in the first family. The same mutation was also identified in the proband and three other affected members of the second family and in all three affected members of the third family. This mutation was not found in more than 3600 chromosomes from unaffected individuals.
Conclusion
Other mutations in ATP1A3 have previously been demonstrated to cause rapid-onset dystonia-parkinsonism (also called dystonia-12) or alternating hemiplegia of childhood. This study shows that an allelic mutation in ATP1A3 produces CAPOS syndrome.
doi:10.1186/1750-1172-9-15
PMCID: PMC3937150  PMID: 24468074
CAPOS syndrome; Cerebellar ataxia; Optic atrophy; Sensorineural hearing loss; ATP1A3
2.  Meier–Gorlin syndrome genotype–phenotype studies: 35 individuals with pre-replication complex gene mutations and 10 without molecular diagnosis 
Meier–Gorlin syndrome (MGS) is an autosomal recessive disorder characterized by microtia, patellar aplasia/hypoplasia, and short stature. Recently, mutations in five genes from the pre-replication complex (ORC1, ORC4, ORC6, CDT1, and CDC6), crucial in cell-cycle progression and growth, were identified in individuals with MGS. Here, we report on genotype–phenotype studies in 45 individuals with MGS (27 females, 18 males; age 3 months–47 years). Thirty-five individuals had biallelic mutations in one of the five causative pre-replication genes. No homozygous or compound heterozygous null mutations were detected. In 10 individuals, no definitive molecular diagnosis was made. The triad of microtia, absent/hypoplastic patellae, and short stature was observed in 82% of individuals with MGS. Additional frequent clinical features were mammary hypoplasia (100%) and abnormal genitalia (42% predominantly cryptorchidism and hypoplastic labia minora/majora). One individual with ORC1 mutations only had short stature, emphasizing the highly variable clinical spectrum of MGS. Individuals with ORC1 mutations had significantly shorter stature and smaller head circumferences than individuals from other gene categories. Furthermore, compared with homozygous missense mutations, compound heterozygous mutations appeared to have a more severe effect on phenotype, causing more severe growth retardation in ORC4 and more frequently pulmonary emphysema in CDT1. A lethal phenotype was seen in four individuals with compound heterozygous ORC1 and CDT1 mutations. No other clear genotype–phenotype association was observed. Growth hormone and estrogen treatment may be of some benefit, respectively, to growth retardation and breast hypoplasia, though further studies in this patient group are needed.
doi:10.1038/ejhg.2011.269
PMCID: PMC3355263  PMID: 22333897
Meier–Gorlin syndrome; ear-patella-short stature syndrome; origin recognition complex; pre-replication complex; genotype–phenotype
3.  Mutations in the Pre-Replication Complex cause Meier-Gorlin syndrome 
Nature genetics  2011;43(4):356-359.
Meier-Gorlin syndrome (ear, patella, short stature syndrome) is an autosomal recessive primordial dwarfism syndrome characterised by absent/hypoplastic patellae and markedly small ears1-3. Both pre and post-natal growth are impaired in this disorder and although microcephaly is often evident, intellect is usually normal. We report here that this disorder shows marked locus heterogeneity and we identify mutations in five separate genes: ORC1, ORC4, ORC6, CDT1 and CDC6. All encode components of the pre-replication complex, implicating defects in replication licensing as the cause of a genetic syndrome with distinct developmental abnormalities.
doi:10.1038/ng.775
PMCID: PMC3068194  PMID: 21358632
4.  Autism, language and communication in children with sex chromosome trisomies 
Archives of disease in childhood  2010;96(10):954-959.
Purpose
Sex chromosome trisomies (SCTs) are found on amniocentesis in 2.3–3.7 per 1000 same-sex births, yet there is a limited database on which to base a prognosis. Autism has been described in postnatally diagnosed cases of Klinefelter syndrome (XXY karyotype), but the prevalence in non-referred samples, and in other trisomies, is unclear. The authors recruited the largest sample including all three SCTs to be reported to date, including children identified on prenatal screening, to clarify this issue.
Design
Parents of children with a SCT were recruited either via prenatal screening or via a parental support group, to give a sample of 58 XXX, 19 XXY and 58 XYY cases. Parents were interviewed using the Vineland Adaptive Behavior Scales and completed questionnaires about the communicative development of children with SCTs and their siblings (42 brothers and 26 sisters).
Results
Rates of language and communication problems were high in all three trisomies. Diagnoses of autism spectrum disorder (ASD) were found in 2/19 cases of XXY (11%) and 11/58 XYY (19%). After excluding those with an ASD diagnosis, communicative profiles indicative of mild autistic features were common, although there was wide individual variation.
Conclusions
Autistic features have not previously been remarked upon in studies of non-referred samples with SCTs, yet the rate is substantially above population levels in this sample, even when attention is restricted to early-identified cases. The authors hypothesise that X-linked and Y-linked neuroligins may play a significant role in the aetiology of communication impairments and ASD.
doi:10.1136/adc.2009.179747
PMCID: PMC3182523  PMID: 20656736
5.  Reduced TFAP2A function causes variable optic fissure closure and retinal defects and sensitizes eye development to mutations in other morphogenetic regulators 
Human genetics  2009;126(6):791-803.
Mutations in the transcription factor encoding TFAP2A gene underlie branchio-oculo-facial syndrome (BOFS), a rare dominant disorder characterized by distinctive craniofacial, ocular, ectodermal and renal anomalies. To elucidate the range of ocular phenotypes caused by mutations in TFAP2A, we took three approaches. First, we screened a cohort of 37 highly selected individuals with severe ocular anomalies plus variable defects associated with BOFS for mutations or deletions in TFAP2A. We identified one individual with a de novo TFAP2A four amino acid deletion, a second individual with two non-synonymous variations in an alternative splice isoform TFAP2A2, and a sibling-pair with a paternally inherited whole gene deletion with variable phenotypic expression. Second, we determined that TFAP2A is expressed in the lens, neural retina, nasal process, and epithelial lining of the oral cavity and palatal shelves of human and mouse embryos—sites consistent with the phenotype observed in patients with BOFS. Third, we used zebrafish to examine how partial abrogation of the fish ortholog of TFAP2A affects the penetrance and expressivity of ocular phenotypes due to mutations in genes encoding bmp4 or tcf7l1a. In both cases, we observed synthetic, enhanced ocular phenotypes including coloboma and anophthalmia when tfap2a is knocked down in embryos with bmp4 or tcf7l1a mutations. These results reveal that mutations in TFAP2A are associated with a wide range of eye phenotypes and that hypomorphic tfap2a mutations can increase the risk of developmental defects arising from mutations at other loci.
doi:10.1007/s00439-009-0730-x
PMCID: PMC3083835  PMID: 19685247
6.  A molecular and clinical study of Larsen syndrome caused by mutations in FLNB 
Journal of Medical Genetics  2006;44(2):89-98.
Background
Larsen syndrome is an autosomal dominant osteochondrodysplasia characterised by large‐joint dislocations and craniofacial anomalies. Recently, Larsen syndrome was shown to be caused by missense mutations or small inframe deletions in FLNB, encoding the cytoskeletal protein filamin B. To further delineate the molecular causes of Larsen syndrome, 20 probands with Larsen syndrome together with their affected relatives were evaluated for mutations in FLNB and their phenotypes studied.
Methods
Probands were screened for mutations in FLNB using a combination of denaturing high‐performance liquid chromatography, direct sequencing and restriction endonuclease digestion. Clinical and radiographical features of the patients were evaluated.
Results and discussion
The clinical signs most frequently associated with a FLNB mutation are the presence of supernumerary carpal and tarsal bones and short, broad, spatulate distal phalanges, particularly of the thumb. All individuals with Larsen syndrome‐associated FLNB mutations are heterozygous for either missense or small inframe deletions. Three mutations are recurrent, with one mutation, 5071G→A, observed in 6 of 20 subjects. The distribution of mutations within the FLNB gene is non‐random, with clusters of mutations leading to substitutions in the actin‐binding domain and filamin repeats 13–17 being the most common cause of Larsen syndrome. These findings collectively define autosomal dominant Larsen syndrome and demonstrate clustering of causative mutations in FLNB.
doi:10.1136/jmg.2006.043687
PMCID: PMC2598053  PMID: 16801345
7.  Genetics 
Postgraduate Medical Journal  1995;71(833):190.
PMCID: PMC2398169

Results 1-10 (10)