PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (196)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Glial A30P alpha-synuclein pathology segregates neurogenesis from anxiety-related behavior in conditional transgenic mice 
Neurobiology of disease  2013;59:38-51.
In Parkinson’s disease (PD) patients, alpha-synuclein (α-syn) pathology advances in form of Lewy bodies and Lewy neurites throughout the brain. Clinically, PD is defined by motor symptoms that are predominantly attributed to the dopaminergic cell loss in the substantia nigra. However, motor deficits are frequently preceded by smell deficiency or neuropsychological symptoms, including increased anxiety and cognitive dysfunction. Accumulating evidence indicates that aggregation of α-syn impairs synaptic function and neurogenic capacity that may be associated with deficits in memory, learning and mood. Whether and how α-syn accumulation contributes to neuropathological events defining these earliest signs of PD is presently poorly understood. We used a tetracycline-suppressive (tet-off) transgenic mouse model that restricts overexpression of human A30P α-syn to neurons owing to usage of the neuron-specific CaMKIIα promoter. Abnormal accumulation of A30P correlated with a decreased survival of newly generated neurons in the hippocampus and olfactory bulb. Furthermore, when A30P α-syn expression was suppressed, we observed reduction of the human protein in neuronal soma. However, residual dox resistant A30P α-syn was detected in glial cells within the hippocampal neurogenic niche, concomitant with the failure to fully restore hippocampal neurogenesis. This finding is indicative to a potential spread of pathology from neuron to glia. In addition, mice expressing A30P α-syn show increased anxiety-related behavior that was reversed after dox treatment. This implies that glial A30P α-synucleinopathy within the dentate gyrus is part of a process leading to impaired hippocampal neuroplasticity, which is, however, not a sole critical event for circuits implicated in anxiety-related behavior.
doi:10.1016/j.nbd.2013.07.004
PMCID: PMC4324756  PMID: 23867236
Gliosis; Parkinson’s disease; S100B; Transgenic; A30P alpha-synuclein; Conditional; Propagation
2.  Environmental neurotoxic challenge of conditional alpha-synuclein transgenic mice predicts a dopaminergic olfactory-striatal interplay in early PD 
Acta neuropathologica  2014;127(4):477-494.
The olfactory bulb (OB) is one of the first brain regions in Parkinson’s disease (PD) to contain alpha-synuclein (α-syn) inclusions, possibly associated with nonmotor symptoms. Mechanisms underlying olfactory synucleinopathy, its contribution to progressive aggregation pathology and nigrostriatal dopaminergic loss observed at later stages, remain unclear. A second hit, such as environmental toxins, is suggestive for α-syn aggregation in olfactory neurons, potentially triggering disease progression. To address the possible pathogenic role of olfactory α-syn accumulation in early PD, we exposed mice with site-specific and inducible overexpression of familial PD-linked mutant α-syn in OB neurons to a low dose of the herbicide paraquat. Here, we found that olfactory α-syn per se elicited structural and behavioral abnormalities, characteristic of an early time point in models with widespread α-syn expression, including hyperactivity and increased striatal dopaminergic marker. Suppression of α-syn reversed the dopaminergic phenotype. In contrast, paraquat treatment synergistically induced degeneration of olfactory dopaminergic cells and opposed the higher reactive phenotype. Neither neurodegeneration nor behavioral abnormalities were detected in paraquat-treated mice with suppressed α-syn expression. By increasing calpain activity, paraquat induced a pathological cascade leading to inhibition of autophagy clearance and accumulation of calpain-cleaved truncated and insoluble α-syn, recapitulating biochemical and structural changes in human PD. Thus our results underscore the primary role of proteolytic failure in aggregation pathology. In addition, we provide novel evidence that olfactory dopaminergic neurons display an increased vulnerability toward neurotoxins in dependence to presence of human α-syn, possibly mediating an olfactory-striatal dopaminergic network dysfunction in mouse models and early PD.
doi:10.1007/s00401-014-1255-5
PMCID: PMC4324760  PMID: 24509835
3.  Reducing C-Terminal-Truncated Alpha-Synuclein by Immunotherapy Attenuates Neurodegeneration and Propagation in Parkinson's Disease-Like Models 
The Journal of Neuroscience  2014;34(28):9441-9454.
Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are common neurodegenerative disorders of the aging population, characterized by progressive and abnormal accumulation of α-synuclein (α-syn). Recent studies have shown that C-terminus (CT) truncation and propagation of α-syn play a role in the pathogenesis of PD/DLB. Therefore, we explored the effect of passive immunization against the CT of α-syn in the mThy1-α-syn transgenic (tg) mouse model, which resembles the striato-nigral and motor deficits of PD. Mice were immunized with the new monoclonal antibodies 1H7, 5C1, or 5D12, all directed against the CT of α-syn. CT α-syn antibodies attenuated synaptic and axonal pathology, reduced the accumulation of CT-truncated α-syn (CT-α-syn) in axons, rescued the loss of tyrosine hydroxylase fibers in striatum, and improved motor and memory deficits. Among them, 1H7 and 5C1 were most effective at decreasing levels of CT-α-syn and higher-molecular-weight aggregates. Furthermore, in vitro studies showed that preincubation of recombinant α-syn with 1H7 and 5C1 prevented CT cleavage of α-syn. In a cell-based system, CT antibodies reduced cell-to-cell propagation of full-length α-syn, but not of the CT-α-syn that lacked the 118–126 aa recognition site needed for antibody binding. Furthermore, the results obtained after lentiviral expression of α-syn suggest that antibodies might be blocking the extracellular truncation of α-syn by calpain-1. Together, these results demonstrate that antibodies against the CT of α-syn reduce levels of CT-truncated fragments of the protein and its propagation, thus ameliorating PD-like pathology and improving behavioral and motor functions in a mouse model of this disease.
doi:10.1523/JNEUROSCI.5314-13.2014
PMCID: PMC4087215  PMID: 25009275
α-synuclein; α-synuclein propagation; α-synuclein truncation; calpain; immunotherapy; Parkinson's disease
5.  Increased Tau Phosphorylation and Aggregation in Mice Overexpressing Corticotropin-Releasing Factor 
Clinical and basic science research suggests that stress and/or changes in central stress signaling intermediates may be involved in Alzheimer’s disease (AD) pathogenesis. Although the links between stress and AD remain unsettled, data from our group and others have established that stress exposure in rodents may confer susceptibility to AD pathology by inducing hippocampal tau phosphorylation (tau-P). Work in our lab has shown that stress-induced tau-P requires activation of the type-1 corticotropin-releasing factor receptor (CRFR1). CRF overexpressing (CRF-OE) mice are a model of chronic stress that display cognitive impairment at 9–10 month of age. In this study we used 6–7 month old CRF-OE mice to examine whether sustained exposure to CRF and stress steroids would impact hippocampal tau-P and kinase activity in the presence or absence of the CRFR1-specific antagonist, R121919, given daily for 30 days. CRF-OE mice had significantly elevated tau-P compared to wild type (WT) mice at the AT8 (S202/T204), PHF-1 (S396/404), S262, and S422 sites. Treating CRF-OE mice with R121919 blocked phosphorylation at the AT8 (S202/T204) and PHF-1 (S396/404) sites, but not at the S262 and S422 sites and reduced phosphorylation of c-Jun N Terminal Kinase (JNK). Examination of hippocampal extracts from CRF-OE mice at the ultrastructural level revealed negatively stained round/globular aggregates that were positively labeled by PHF-1. These data suggest critical roles for CRF and CRFR1 in tau-P and aggregation and may have implications for the development of AD cognitive decline.
doi:10.3233/JAD-141281
PMCID: PMC4258165  PMID: 25125464
Alzheimer’s disease; corticotropin-releasing; corticotropin-releasing factor receptor (CRFR); electron microscopy; hippocampus; immunohistochemistry; stress; tau phosphorylation (tau-P); western blot
6.  Isogenic Human iPSC Parkinson’s Model Shows Nitrosative Stress-Induced Dysfunction in MEF2-PGC1α Transcription 
Cell  2013;155(6):1351-1364.
SUMMARY
Parkinson’s disease (PD) is characterized by loss of A9 dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). An association has been reported between PD and exposure to mitochondrial toxins, including environmental pesticides paraquat, maneb, and rotenone. Here, using a robust, patient-derived stem cell model of PD allowing comparison of A53T α-synuclein (α-syn) mutant cells and isogenic mutation-corrected controls, we identify mitochondrial toxin-induced perturbations in A53T α-syn A9 DA neurons (hNs). We report a pathway whereby basal and toxin-induced nitrosative/oxidative stress results in S-nitrosylation of transcription factor MEF2C in A53T hNs compared to corrected controls. This redox reaction inhibits the MEF2C-PGC1α transcriptional network, contributing to mitochondrial dysfunction and apoptotic cell death. Our data provide mechanistic insight into gene-environmental interaction (GxE) in the pathogenesis of PD. Furthermore, using small-molecule high-throughput screening, we identify the MEF2C-PGC1α pathway as a therapeutic target to combat PD.
doi:10.1016/j.cell.2013.11.009
PMCID: PMC4028128  PMID: 24290359
7.  Alterations in the levels of vesicular trafficking proteins involved in HIV replication in the brains and CSF of patients with HIV-associated neurocognitive disorders 
Human immunodeficiency virus (HIV) associated neurocognitive disorders (HAND) remain prevalent despite improved antiretroviral therapies. A HAND-specific biomarker indicative of neuropsychological impairment (NPI) would give insight into disease progression and aid clinicians in designing therapy. Endosomal sorting complex required for transport (ESCRT) proteins such as tumor susceptibility gene (TSG)-101, vacuolar protein sorting (VPS)-4 and LIP-5 are important for HIV replication and recently antiviral interferon stimulated gene (ISG)-15 was proposed as a biomarker for CNS injury. Here, we analyzed a well-characterized cohort of HIV+ cerebral spinal fluid (CSF) and postmortem brain specimens for multiple vesicular trafficking proteins and a related innate immune protein, ISG-15, TSG-101, VPS-4 and LIP-5. All protein levels trended higher with increased NPI and neuropathology. ISG-15 CSF levels were increased in HIV encephalitis (HIVE) compared to normal cases, and three quarters of HIVE samples had above average CSF ISG-15 levels. VPS-4 CSF levels were increased in NPI/NPI-O compared to normal patients. VPS-4 CSF levels in HIV-associated dementia were equivalent to that of normal patients. LIP-5 CSF levels positively correlate with ISG-15 levels, and higher than average ISG-15 levels indicate elevated viral load. Immunoblot and immunohistochemical analyses show increased expression of ISG-15, VPS-4 and LIP-5 in neuronal cell bodies and astroglial cells. ESCRT protein CSF levels analyzed in conjunction with viral load may be indicative of NPI stage, and may aid in the diagnosis and design of therapies for HIV patients. Further studies on the ESCRT protein expression during HIV infection may lead to a promising biomarker for predicting progression of NPI.
doi:10.1007/s11481-013-9511-3
PMCID: PMC3973444  PMID: 24292993
HIV; biomarker; ESCRT; ISG-15; VPS-4; LIP-5
8.  Proteomic Analysis of Highly Prevalent Amyloid A Amyloidosis Endemic to Endangered Island Foxes 
PLoS ONE  2014;9(11):e113765.
Amyloid A (AA) amyloidosis is a debilitating, often fatal, systemic amyloid disease associated with chronic inflammation and persistently elevated serum amyloid A (SAA). Elevated SAA is necessary but not sufficient to cause disease and the risk factors for AA amyloidosis remain poorly understood. Here we identify an extraordinarily high prevalence of AA amyloidosis (34%) in a genetically isolated population of island foxes (Urocyon littoralis) with concurrent chronic inflammatory diseases. Amyloid deposits were most common in kidney (76%), spleen (58%), oral cavity (45%), and vasculature (44%) and were composed of unbranching, 10 nm in diameter fibrils. Peptide sequencing by mass spectrometry revealed that SAA peptides were dominant in amyloid-laden kidney, together with high levels of apolipoprotein E, apolipoprotein A-IV, fibrinogen-α chain, and complement C3 and C4 (false discovery rate ≤0.05). Reassembled peptide sequences showed island fox SAA as an 111 amino acid protein, most similar to dog and artic fox, with 5 unique amino acid variants among carnivores. SAA peptides extended to the last two C-terminal amino acids in 5 of 9 samples, indicating that near full length SAA was often present in amyloid aggregates. These studies define a remarkably prevalent AA amyloidosis in island foxes with widespread systemic amyloid deposition, a unique SAA sequence, and the co-occurrence of AA with apolipoproteins.
doi:10.1371/journal.pone.0113765
PMCID: PMC4245998  PMID: 25429466
9.  Preserved functional autonomic phenotype in adult mice overexpressing moderate levels of human alpha‐synuclein in oligodendrocytes 
Physiological Reports  2014;2(11):e12209.
Abstract
Mice overexpressing human alpha‐synuclein in oligodendrocytes (MBP1‐α‐syn) recapitulate some key functional and neuropathological features of multiple system atrophy (MSA). Whether or not these mice develop severe autonomic failure, which is a key feature of human MSA, remains unknown. We explored cardiovascular autonomic regulation using long‐term blood pressure (BP) radiotelemetry and pharmacological testing. We instrumented 12 MBP1‐α‐syn mice and 11 wild‐type mice aged 9 months for radiotelemetry. Animals were tested with atropine, metoprolol, clonidine, and trimethaphan at 9 and 12 months age. We applied spectral and cross‐spectral analysis to assess heart rate (HR) and BP variability. At 9 months of age daytime BP (transgenic: 101 ± 2 vs. wild type: 99 ± 2 mmHg) and HR (497 ± 11 vs. 505 ± 16 beats/min) were similar. Circadian BP and HR rhythms were maintained. Nighttime BP (109 ± 2 vs. 108 ± 2 mmHg) and HR (575 ± 15 vs. 569 ± 14 beats/min), mean arterial BP responses to trimethaphan (−21 ± 8 vs. −10 ± 5 mmHg, P = 0.240) and to clonidine (−8 ± 3 vs. −5 ± 2 mmHg, P = 0.314) were similar. HR responses to atropine (+159 ± 24 vs. +146 ± 22 beats/min), and to clonidine (−188 ± 21 vs. −163 ± 33 beats/min) did not differ between strains. Baroreflex sensitivity (4 ± 1 vs. 4 ± 1 msec/mmHg) and HR variability (total power, 84 ± 17 vs. 65 ± 21 msec²) were similar under resting conditions and during pharmacological testing. Repeated measurements at 12 months of age provided similar results. In mice, moderate overexpression of human alpha‐synuclein in oligodendrocytes is not sufficient to induce overt autonomic failure. Additional mechanisms may be required to express the autonomic failure phenotype including higher levels of expression or more advanced age.
Mice overexpressing human alpha‐synuclein in oligodendrocytes recapitulate key functional and neuropathological features of multiple system atrophy (MSA). Whether or not these mice model MSA abnormalities in cardiovascular autonomic regulation is unknown. Therefore, we explored cardiovascular autonomic regulation using long‐term blood pressure radiotelemetry combined with detailed pharmacological testing in mice overexpressing moderate levels of human alpha‐synuclein under the control of the oligodendrocyte‐specific murine myelin basic protein promoter. The major finding was that the moderate overexpression of human alpha‐synuclein in oligodendrocytes was not sufficient to induce overt autonomic failure in this mouse model.
doi:10.14814/phy2.12209
PMCID: PMC4255815  PMID: 25428949
Autonomic failure; blood pressure; human alpha‐synuclein; multiple system atrophy; transgenic mice
10.  Modulation of the Maladaptive Stress Response to Manage Diseases of Protein Folding 
PLoS Biology  2014;12(11):e1001998.
This study shows how chronic stress and heat shock response exacerbate the phenotype in protein misfolding diseases by triggering a Maladaptive Stress Response; this pathway represents a promising therapeutic target for multiple genetic disorders.
Diseases of protein folding arise because of the inability of an altered peptide sequence to properly engage protein homeostasis components that direct protein folding and function. To identify global principles of misfolding disease pathology we examined the impact of the local folding environment in alpha-1-antitrypsin deficiency (AATD), Niemann-Pick type C1 disease (NPC1), Alzheimer's disease (AD), and cystic fibrosis (CF). Using distinct models, including patient-derived cell lines and primary epithelium, mouse brain tissue, and Caenorhabditis elegans, we found that chronic expression of misfolded proteins not only triggers the sustained activation of the heat shock response (HSR) pathway, but that this sustained activation is maladaptive. In diseased cells, maladaptation alters protein structure–function relationships, impacts protein folding in the cytosol, and further exacerbates the disease state. We show that down-regulation of this maladaptive stress response (MSR), through silencing of HSF1, the master regulator of the HSR, restores cellular protein folding and improves the disease phenotype. We propose that restoration of a more physiological proteostatic environment will strongly impact the management and progression of loss-of-function and gain-of-toxic-function phenotypes common in human disease.
Author Summary
The function of all proteins is dependent on achieving the correct folded state, a process referred to as protein homeostasis or proteostasis. Cellular proteostasis is maintained by diverse signaling pathways, including the heat shock response (HSR), which protects proteins in the face of acute stress. However, genetic disorders are a challenge to cells, since the mutated protein will often fail to fold properly and function correctly. We have discovered that the chronic expression of such disease-causing proteins can trigger the sustained activation of the HSR in a failed attempt to correct the associated misfolding defect. Such chronic HSR activation presents an unanticipated challenge to the cell by initiating a sustained state of stress management, which leads to a general protein-folding deficiency. This in turn further exacerbates the disease phenotype—a condition we have termed maladaptive. We show that down-regulation of this maladaptive stress response (MSR) restores cellular protein folding and improves the disease condition in loss-of-function disorders such as cystic fibrosis, Niemann-Pick disease and alpha-1-antitrypsin deficiency, as well as gain-of-toxic-function diseases such as Alzheimer's disease. MSR management therefore potentially represents an important therapeutic first step in regulating the progression of human disease associated with chronic protein misfolding.
doi:10.1371/journal.pbio.1001998
PMCID: PMC4236052  PMID: 25406061
11.  Association of early experience with neurodegeneration in aged primates 
Neurobiology of aging  2009;32(1):151-156.
Environment influences brain development, neurogenesis and, possibly, vulnerability to neurodegenerative disease. We retrospectively examined the brains of aged rhesus monkeys reared during early life in either small cages or larger, “standard-sized” cages; all monkeys were subsequently maintained in standard-sized cages during adulthood. Aged monkeys reared in smaller cages exhibited significantly greater β-amyloid plaque deposition in the neocortex and a significant reduction in synaptophysin immunolabeling in cortical regions compared to aged monkeys reared in standard-sized cages (p < 0.001 and p < 0.05, respectively). These findings suggest that early environment may influence brain structure and vulnerability to neurodegenerative changes in late life.
doi:10.1016/j.neurobiolaging.2009.01.014
PMCID: PMC4210191  PMID: 19321231
Aging; β-Amyloid; Neurodegeneration; Environment; Neocortex; Rhesus monkey; Synapse density; Synaptophysin
12.  The Challenge of Connecting the Dots in the B.R.A.I.N 
Neuron  2013;80(2):10.1016/j.neuron.2013.09.008.
The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative has focused scientific attention on the necessary tools to understand the human brain and mind. Here, we outline our collective vision for what we can achieve within a decade with properly targeted efforts, and discuss likely technological deliverables and neuroscience progress.
doi:10.1016/j.neuron.2013.09.008
PMCID: PMC3864648  PMID: 24139032
13.  Antidepressants reduce neuroinflammatory responses and astroglial alpha-synuclein accumulation in a transgenic mouse model of Multiple System Atrophy 
Glia  2013;62(2):317-337.
Multiple system atrophy (MSA) is a neurodegenerative disease characterized by the pathological accumulation of alpha-synuclein (α-syn) within oligodendroglial cells. This accumulation is accompanied by neuroinflammation with astrogliosis and microgliosis, that leads to neuronal death and subsequent parkinsonism and dysautonomia. Antidepressants have been explored as neuroprotective agents as they normalize neurotrophic factor levels, increase neurogenesis and reduce neurodegeneration, but their anti-inflammatory properties have not been fully characterized. We analyzed the anti-inflammatory profiles of three different antidepressants (fluoxetine, olanzapine and amitriptyline) in the MBP1-hα-syn transgenic (tg) mouse model of MSA. We observed that antidepressant treatment decreased the number of α-syn-positive cells in the basal ganglia of 11-month old tg animals. This reduction was accompanied with a similar decrease in the colocalization of α-syn with astrocyte markers in this brain structure. Consistent with these results, antidepressants reduced astrogliosis in the hippocampus and basal ganglia of the MBP1-hα-syn tg mice, and modulated the expression levels of key cytokines that were dysregulated in the tg mouse model, such as IL-1β. In vitro experiments in the astroglial cell line C6 confirmed that antidepressants inhibited NF-κB translocation to the nucleus and reduced IL-1β protein levels. We conclude that the anti-inflammatory properties of antidepressants in the MBP1-hα-syn tg mouse model of MSA might be related to their ability to inhibit α-syn propagation from oligodendrocytes to astroglia and to regulate transcription factors involved in cytokine expression. Our results suggest that antidepressants might be of interest as anti-inflammatory and α-syn-reducing agents for MSA and other α-synucleinopathies.
doi:10.1002/glia.22610
PMCID: PMC4183229  PMID: 24310907
astroglia; cytokine; chemokine; anti-inflammation; neurodegenerative disease
14.  Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease 
Neuron  2013;79(5):873-886.
SUMMARY
Phagocytosis controls CNS homeostasis by facilitating the removal of unwanted cellular debris. Accordingly, impairments in different receptors or proteins involved in phagocytosis result in enhanced inflammation and neurodegeneration. While various studies have identified extrinsic factors that modulate phagocytosis in health and disease, key intracellular regulators are less understood. Here we show that the autophagy protein beclin 1 is required for efficient phagocytosis in vitro and in mouse brains. Furthermore, we show that beclin 1-mediated impairments in phagocytosis are associated with dysfunctional recruitment of retromer to phagosomal membranes, reduced retromer levels, and impaired recycling of phagocytic receptors CD36 and Trem2. Interestingly, microglia isolated from human Alzheimer’s disease (AD) brains show significantly reduced beclin 1 and retromer protein levels. These findings position beclin 1 as a link between autophagy, retromer trafficking, and receptor-mediated phagocytosis and provide insight into mechanisms by which phagocytosis is regulated and how it may become impaired in AD.
doi:10.1016/j.neuron.2013.06.046
PMCID: PMC3779465  PMID: 24012002
15.  De Novo Prion Aggregates Trigger Autophagy in Skeletal Muscle 
Journal of Virology  2014;88(4):2071-2082.
ABSTRACT
In certain sporadic, familial, and infectious prion diseases, the prion protein misfolds and aggregates in skeletal muscle in addition to the brain and spinal cord. In myocytes, prion aggregates accumulate intracellularly, yet little is known about clearance pathways. Here we investigated the clearance of prion aggregates in muscle of transgenic mice that develop prion disease de novo. In addition to neurodegeneration, aged mice developed a degenerative myopathy, with scattered myocytes containing ubiquitinated, intracellular prion inclusions that were adjacent to myocytes lacking inclusions. Myocytes also showed elevated levels of the endoplasmic reticulum chaperone Grp78/BiP, suggestive of impaired protein degradation and endoplasmic reticulum stress. Additionally, autophagy was induced, as indicated by increased levels of beclin-1 and LC3-II. In C2C12 myoblasts, inhibition of autophagosome maturation or lysosomal degradation led to enhanced prion aggregation, consistent with a role for autophagy in prion aggregate clearance. Taken together, these findings suggest that the induction of autophagy may be a central strategy for prion aggregate clearance in myocytes.
IMPORTANCE
doi:10.1128/JVI.02279-13
PMCID: PMC3911572  PMID: 24307586
16.  Epigenetic Alterations in the Brain Associated with HIV-1 Infection and Methamphetamine Dependence 
PLoS ONE  2014;9(7):e102555.
HIV involvement of the CNS continues to be a significant problem despite successful use of combination antiretroviral therapy (cART). Drugs of abuse can act in concert with HIV proteins to damage glia and neurons, worsening the neurotoxicity caused by HIV alone. Methamphetamine (METH) is a highly addictive psychostimulant drug, abuse of which has reached epidemic proportions and is associated with high-risk sexual behavior, increased HIV transmission, and development of drug resistance. HIV infection and METH dependence can have synergistic pathological effects, with preferential involvement of frontostriatal circuits. At the molecular level, epigenetic alterations have been reported for both HIV-1 infection and drug abuse, but the neuropathological pathways triggered by their combined effects are less known. We investigated epigenetic changes in the brain associated with HIV and METH. We analyzed postmortem frontal cortex tissue from 27 HIV seropositive individuals, 13 of which had a history of METH dependence, in comparison to 14 cases who never used METH. We detected changes in the expression of DNMT1, at mRNA and protein levels, that resulted in the increase of global DNA methylation. Genome-wide profiling of DNA methylation in a subset of cases, showed differential methylation on genes related to neurodegeneration; dopamine metabolism and transport; and oxidative phosphorylation. We provide evidence for the synergy of HIV and METH dependence on the patterns of DNA methylation on the host brain, which results in a distinctive landscape for the comorbid condition. Importantly, we identified new epigenetic targets that might aid in understanding the aggravated neurodegenerative, cognitive, motor and behavioral symptoms observed in persons living with HIV and addictions.
doi:10.1371/journal.pone.0102555
PMCID: PMC4108358  PMID: 25054922
17.  Cerebrolysin™ efficacy in a transgenic model of tauopathy: role in regulation of mitochondrial structure 
BMC Neuroscience  2014;15(1):90.
Background
Alzheimer’s Disease (AD) and Fronto temporal lobar dementia (FTLD) are common causes of dementia in the aging population for which limited therapeutical options are available. These disorders are associated with Tau accumulation. We have previously shown that CerebrolysinTM (CBL), a neuropeptide mixture with neurotrophic effects, ameliorates the behavioral deficits and neuropathological alterations in amyloid precursor protein (APP) transgenic (tg) mouse model of AD by reducing hyper-phosphorylated Tau. CBL has been tested in clinical trials for AD, however it’s potential beneficial effects in FTLD are unknown. For this purpose we sought to investigate the effects of CBL in a tg model of tauopathy. Accordingly, double tg mice expressing mutant Tau under the mThy-1 promoter and GSK3β (to enhance Tau phosphorylation) were treated with CBL and evaluated neuropathologically.
Results
Compared to single Tau tg mice the Tau/GSK3β double tg model displayed elevated levels of Tau phosphorylation and neurodegeneration in the hippocampus. CBL treatment reduced the levels of Tau phosphorylation in the dentate gyrus and the degeneration of pyramidal neurons in the temporal cortex and hippocampus of the Tau/GSK3β double tg mice. Interestingly, the Tau/GSK3β double tg mice also displayed elevated levels of Dynamin-related protein-1 (Drp-1), a protein that hydrolyzes GTP and is required for mitochondrial division. Ultrastructural analysis of the mitochondria in the Tau/GSK3β double tg mice demonstrated increased numbers and fragmentation of mitochondria in comparison to non-tg mice. CBL treatment normalized levels of Drp-1 and restored mitochondrial structure.
Conclusions
These results suggest that the ability of CBL to ameliorate neurodegenerative pathology in the tauopathy model may involve reducing accumulation of hyper-phosphorylated Tau and reducing alterations in mitochondrial biogenesis associated with Tau.
doi:10.1186/1471-2202-15-90
PMCID: PMC4122761  PMID: 25047000
Tau; GSK3β; Drp-1; Neuroprotection; Alzheimer’s disease; Tauopathies
18.  PGC-1α rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function 
Science translational medicine  2012;4(142):142ra97.
Huntington’s disease (HD) is caused by CAG / polyglutamine repeat expansions in the huntingtin (htt) gene, yielding proteins that misfold and resist degradation. HD belongs to a large class of neurodegenerative proteinopathies including Alzheimer’s disease, Parkinson’s disease, and tauopathies. Previous studies demonstrated that mutant htt interferes with transcriptional programs coordinated by PPARγ co-activator 1α (PGC-1α), a regulator of mitochondrial biogenesis and oxidative stress. To test if restoration of PGC-1α could treat HD, we attempted an in vivo genetic rescue in mice. We found that PGC-1α induction ameliorates HD neurodegeneration and virtually eliminates htt protein aggregation, in part by attenuating oxidative stress. Further studies revealed that PGC-1α promotes htt turnover and aggregate elimination by transactivation of TFEB, a master regulator of the autophagy-lysosome pathway, and that TFEB alone is capable of reducing htt aggregation and neurotoxicity, placing PGC-1α upstream of TFEB. PGC-1α and TFEB thus hold great promise as therapies for HD and other neurodegenerative proteinopathies.
doi:10.1126/scitranslmed.3003799
PMCID: PMC4096245  PMID: 22786682
19.  Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia 
Nature communications  2013;4:1562.
Abnormal aggregation of α-synuclein and sustained microglial activation are important contributors to the pathogenic processes in Parkinson's disease. However, the relationship between disease-associated protein aggregation and microglia-mediated neuroinflammation remains unknown. Here, using a combination of in silico, in vitro, and in vivo approaches, we show that extracellular α-synuclein released from neuronal cells is an endogenous agonist for toll-like receptor 2 (TLR2), which activates inflammatory responses in microglia. TLR2 ligand activity of α-synuclein is conformation-sensitive; only specific types of oligomer can interact with and activate TLR2. This paracrine interaction between neuron-released oligomeric α-synuclein and TLR2 in microglia suggests that both of these proteins are novel therapeutic targets for modification of neuroinflammation in Parkinson's disease and related neurological diseases.
doi:10.1038/ncomms2534
PMCID: PMC4089961  PMID: 23463005
20.  Disease modifying effect of adiponectin in model of α-synucleinopathies 
Objective
Growing evidence suggests that neurodegenerative diseases are associated with metabolic disorders, but the mechanisms are still unclear. Better comprehension of this issue might provide a new strategy for treatment of neurodegenerative diseases. We investigated possible roles of adiponectin (APN), the antidiabetes protein, in the pathogenesis of α-synucleinopathies.
Methods
Using biochemical and histological methods, we investigated autopsy brain of α-synucleinopathies including Parkinson's disease (PD) and dementia with Lewy bodies (DLB), and analyzed the effects of APN in cellular and in mouse models of α-synucleinopathies.
Results
We observed that APN is localized in Lewy bodies derived from α-synucleinopathies, such as Parkinson's disease and dementia with Lewy bodies. In neuronal cells expressing α-synuclein (αS), aggregation of αS was suppressed by treatment with recombinant APN in an AdipoRI-AMP kinase pathway-dependent manner. Concomitantly, phosphorylation and release of αS were significantly decreased by APN, suggesting that APN may be antineurodegenerative. In transgenic mice expressing αS, both histopathology and movement disorder were significantly improved by intranasal treatment with globular APN when the treatment was initiated in the early stage of the disease. In a mouse model, reduced levels of guanosine and inosine monophosphates, both of which are potential stimulators of aggregation of αS, might partly contribute to suppression of aggregation of αS by APN.
Interpretation
Taken together, APN may suppress neurodegeneration through modification of the metabolic pathway, and could possess a therapeutic potential against α-synucleinopathies.
doi:10.1002/acn3.77
PMCID: PMC4128281  PMID: 25126588
21.  Gene expression changes consistent with neuroAIDS and impaired working memory in HIV-1 transgenic rats 
Background
A thorough investigation of the neurobiology of HIV-induced neuronal dysfunction and its evolving phenotype in the setting of viral suppression has been limited by the lack of validated small animal models to probe the effects of concomitant low level expression of multiple HIV-1 products in disease-relevant cells in the CNS.
Results
We report the results of gene expression profiling of the hippocampus of HIV-1 Tg rats, a rodent model of HIV infection in which multiple HIV-1 proteins are expressed under the control of the viral LTR promoter in disease-relevant cells including microglia and astrocytes. The Gene Set Enrichment Analysis (GSEA) algorithm was used for pathway analysis. Gene expression changes observed are consistent with astrogliosis and microgliosis and include evidence of inflammation and cell proliferation. Among the genes with increased expression in HIV-1 Tg rats was the interferon stimulated gene 15 (ISG-15), which was previously shown to be increased in the cerebrospinal fluid (CSF) of HIV patients and to correlate with neuropsychological impairment and neuropathology, and prostaglandin D2 (PGD2) synthase (Ptgds), which has been associated with immune activation and the induction of astrogliosis and microgliosis. GSEA-based pathway analysis highlighted a broad dysregulation of genes involved in neuronal trophism and neurodegenerative disorders. Among the latter are genesets associated with Huntington’s disease, Parkinson’s disease, mitochondrial, peroxisome function, and synaptic trophism and plasticity, such as IGF, ErbB and netrin signaling and the PI3K signal transduction pathway, a mediator of neural plasticity and of a vast array of trophic signals. Additionally, gene expression analyses also show altered lipid metabolism and peroxisomes dysfunction. Supporting the functional significance of these gene expression alterations, HIV-1 Tg rats showed working memory impairments in spontaneous alternation behavior in the T-Maze, a paradigm sensitive to prefrontal cortex and hippocampal function.
Conclusions
Altogether, differentially regulated genes and pathway analysis identify specific pathways that can be targeted therapeutically to increase trophic support, e.g. IGF, ErbB and netrin signaling, and reduce neuroinflammation, e.g. PGD2 synthesis, which may be beneficial in the treatment of chronic forms of HIV-associated neurocognitive disorders in the setting of viral suppression.
doi:10.1186/1750-1326-9-26
PMCID: PMC4107468  PMID: 24980976
22.  Age-appropriate cognition and subtle dopamine-independent motor deficits in aged Tau knockout mice 
Neurobiology of aging  2013;34(6):1523-1529.
The microtubule-associated protein tau is expressed throughout the nervous system, most highly in neurons but also in glial cells. Its functions in adult and aging mammals remain to be defined. Previous studies in mouse models found either protective or detrimental effects of genetic tau ablation. While tau ablation prevented synaptic, network and cognitive dysfunctions in several models of Alzheimer’s disease and made mice more resistant to epileptic seizures, a recent study described a parkinsonian phenotype in aging Tau knockout mice. Here we tested cognition and motor functions in Tau+/+, Tau+/− and Tau−/− mice around 1 and 2 years of age. Tau ablation did not impair cognition and caused only minor motor deficits that were much more subtle than those associated with the aging process. Tau ablation caused a mild increase in body weight, which correlated with and may have contributed to some of the motor deficits. However, tau ablation did not cause significant dopaminergic impairments, and dopamine treatment did not improve the motor deficits, suggesting that they do not reflect extrapyramidal dysfunction.
doi:10.1016/j.neurobiolaging.2012.12.003
PMCID: PMC3596503  PMID: 23332171
Tau knockout; parkinsonian; aging
23.  Neuropsychiatric Features of Frontal Lobe Dysfunction in Autopsy-Confirmed Patients with Lewy Bodies and “Pure” Alzheimer’s Disease 
Objective
To compare patients with autopsy-confirmed Alzheimer’s disease (AD, #14) and Dementia with Lewy bodies (DLB) on the frequency of behaviors related to frontal systems dysfunction and the association of these behaviors with dementia severity.
Design
Cross-sectional survey of longitudinal cohort.
Setting
University Alzheimer’s disease research center.
Participants
Volunteer sample of 19 DLB and 38 AD participants with autopsy-confirmed diagnoses, similar in age (DLB: 77.3, AD: 77.5), education (15.2, 14.7), and Mini-Mental State Examination (MMSE) score (20.6, 20.5), with impairment ranging from mild deficits to moderate dementia.
Measurements
The Frontal Systems Behavior Scale (FrSBe)-Family Rating Form assessing patient apathy, disinhibition, and executive dysfunction by a knowledgeable informant.
Results
A two-way analysis of variance with the FrSBe total as the dependent variable revealed a significant MMSE by diagnosis interaction (F(1,53)=9.34, p=.004). Mean FrSBe total for AD patients showed significant impairment across the range of dementia severity, while it was relatively preserved for DLB patients in early stage of disease. The interaction term showed the same pattern for the executive dysfunction (F(1,53)=7.62, p=.008), disinhibition (F(1,53)=4.90, p=.031), and apathy (F(1,53)=9.77, p=.003) subscales.
Conclusions
While frontal behavioral symptoms in AD patients were present regardless of stage of dementia, DLB patients showed significant frontal dysfunction only in later stages. Results suggest that frontal subcortical circuits associated with behaviors assessed by the FrSBe are affected early in AD but not until later stages in DLB. Assessing specific behaviors related to frontal systems, coupled with stage of cognitive decline, may aid in clinical differentiation of AD and DLB.
doi:10.1016/j.jagp.2012.10.022
PMCID: PMC3664517  PMID: 23567425
Dementia with Lewy bodies; Alzheimer’s disease; Frontal systems; Behavioral symptoms
24.  Immunotherapy for neurodegenerative diseases: focus on α-synucleinopathies 
Pharmacology & therapeutics  2013;138(3):311-322.
Immunotherapy is currently being intensively explored as much-needed disease-modifying treatment for neurodegenerative diseases. While Alzheimer’s disease (AD) has been the focus of numerous immunotherapeutic studies, less attention has been paid to Parkinson’s disease (PD) and other neurodegenerative disorders. The reason for this difference is that the amyloid beta (Aβ) protein in AD is a secreted molecule that circulates in blood and is readably recognized by antibodies. In contrast, α-synuclein (α-syn), tau, huntingtin and other proteins involved in neurodegenerative diseases have been considered to be exclusively of intracellular nature. However, the recent discovery that toxic oligomeric versions of α-syn and tau accumulate in the membrane and can be excreted to the extracellular environment has provided a rationale for the development of immunotherapeutic approaches for PD, dementia with Lewy bodies, frontotemporal dementia, and other neurodegenerative disorders characterized by the abnormal accumulation of these proteins. Active immunization, passive immunization, and T cell-mediated cellular immunotherapeutic approaches have been developed targeting Aβ, α-syn and tau. Most advanced studies, including results from phase III clinical trials for passive immunization in AD, have been recently reported. Results suggest that immunotherapy might be a promising therapeutic approach for neurodegenerative diseases that progress with the accumulation and propagation of toxic protein aggregates. In this manuscript we provide an overview on immunotherapeutic advances for neurodegenerative disorders, with special emphasis on α-synucleinopathies.
doi:10.1016/j.pharmthera.2013.01.013
PMCID: PMC3925783  PMID: 23384597
Immunotherapy; neurodegenerative disease; α-synucleinopathies; α-synuclein; active immunization; passive immunization; vaccination; Parkinson’s disease; Multiple system atrophy; dementia with Lewy bodies; α-synuclein propagation
25.  Hippocampal neuronal cells that accumulate α-synuclein fragments are more vulnerable to Aβ oligomer toxicity via mGluR5 – implications for dementia with Lewy bodies 
Background
In dementia with Lewy bodies (DLB) abnormal interactions between α-synuclein (α-syn) and beta amyloid (Aβ) result in selective degeneration of neurons in the neocortex, limbic system and striatum. However, factors rendering these neurons selectively vulnerable have not been fully investigated. The metabotropic glutamate receptor 5 (mGluR5) has been shown to be up regulated in DLB and might play a role as a mediator of the neurotoxic effects of Aβ and α-syn in vulnerable neuronal populations. In this context, the main objective of the present study was to investigate the role of mGluR5 as a mediator of the neurotoxic effects of α-syn and Aβ in the hippocampus.
Results
We generated double transgenic mice over-expressing amyloid precursor protein (APP) and α-syn under the mThy1 cassette and investigated the relationship between α-syn cleavage, Aβ, mGluR5 and neurodegeneration in the hippocampus. We found that compared to the single tg mice, the α-syn/APP tg mice displayed greater accumulation of α-syn and mGluR5 in the CA3 region of the hippocampus compared to the CA1 and other regions. This was accompanied by loss of CA3 (but not CA1) neurons in the single and α-syn/APP tg mice and greater loss of MAP 2 and synaptophysin in the CA3 in the α-syn/APP tg. mGluR5 gene transfer using a lentiviral vector into the hippocampus CA1 region resulted in greater α-syn accumulation and neurodegeneration in the single and α-syn/APP tg mice. In contrast, silencing mGluR5 with a lenti-shRNA protected neurons in the CA3 region of tg mice. In vitro, greater toxicity was observed in primary hippocampal neuronal cultures treated with Aβ oligomers and over-expressing α-syn; this effect was attenuated by down-regulating mGluR5 with an shRNA lentiviral vector. In α-syn-expressing neuronal cells lines, Aβ oligomers promoted increased intracellular calcium levels, calpain activation and α-syn cleavage resulting in caspase-3-dependent cell death. Treatment with pharmacological mGluR5 inhibitors such as 2-Methyl-6-(phenylethynyl)pyridine (MPEP) and 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) attenuated the toxic effects of Aβ in α-syn-expressing neuronal cells.
Conclusions
Together, these results support the possibility that vulnerability of hippocampal neurons to α-syn and Aβ might be mediated via mGluR5. Moreover, therapeutical interventions targeting mGluR5 might have a role in DLB.
doi:10.1186/1750-1326-9-18
PMCID: PMC4041038  PMID: 24885390
α-synuclein; Amyloid β oligomer; Dementia with Lewy body; Hippocampus; Human; mGluR5; Parkinsonism; Transgenic animal model

Results 1-25 (196)