PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (35)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Genome-Wide Association Study of Shared Components of Reading Disability and Language Impairment 
Genes, brain, and behavior  2013;12(8):792-801.
Written and verbal language are neurobehavioral traits vital to the development of communication skills. Unfortunately, disorders involving these traits—specifically reading disability (RD) and language impairment (LI)—are common and prevent affected individuals from developing adequate communication skills, leaving them at risk for adverse academic, socioeconomic, and psychiatric outcomes. Both RD and LI are complex traits that frequently co-occur, leading us to hypothesize that these disorders share genetic etiologies. To test this, we performed a genome wide association study on individuals affected with both RD and LI in the Avon Longitudinal Study of Parents and Children. The strongest associations were seen with markers in ZNF385D (OR=1.81, p=5.45 × 10−7) and COL4A2 (OR=1.71, p=7.59×10−7). Markers within NDST4 showed the strongest associations with LI individually (OR=1.827, p=1.40×10−7). We replicated association of ZNF385D using receptive vocabulary measures in the Pediatric Imaging Neurocognitive Genetics study (p=0.00245). We then used diffusion tensor imaging fiber tract volume data on 16 fiber tracts to examine the implications of replicated markers. ZNF385D was a predictor of overall fiber tract volumes in both hemispheres, as well as global brain volume. Here, we present evidence for ZNF385D as a candidate gene for RD and LI. The implication of transcription factor ZNF385D in RD and LI underscores the importance of transcriptional regulation in the development of higher order neurocognitive traits. Further study is necessary to discern target genes of ZNF385D and how it functions within neural development of fluent language.
doi:10.1111/gbb.12085
PMCID: PMC3904347  PMID: 24024963
ALSPAC; Language Impairment; Reading Disability; Dyslexia GWAS; ZNF385D; PING
2.  The Challenge of Connecting the Dots in the B.R.A.I.N 
Neuron  2013;80(2):10.1016/j.neuron.2013.09.008.
The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative has focused scientific attention on the necessary tools to understand the human brain and mind. Here, we outline our collective vision for what we can achieve within a decade with properly targeted efforts, and discuss likely technological deliverables and neuroscience progress.
doi:10.1016/j.neuron.2013.09.008
PMCID: PMC3864648  PMID: 24139032
3.  Early Adolescent Cortical Thinning Is Related to Better Neuropsychological Performance 
Adolescence is characterized by significant neuromaturation, including extensive cortical thinning, particularly in frontal regions. The goal of this study was to examine the behavioral correlates of neurostructural development in early adolescence. Participants were 185 healthy 12- to 14-year-olds (44% female) recruited from local schools. Participants completed a comprehensive neuropsychological test battery and magnetic resonance imaging session. Cortical surface reconstruction and thickness estimates were performed via FreeSurfer. Age and cortical thickness were negatively correlated in 10 brain regions, 7 of which were in frontal areas (β = −.15 to −.25, ps ≤.05). Hierarchical linear regressions examined the influence of cortical thickness on working memory, attention, verbal learning and memory, visuospatial functioning, spatial planning and problem solving, and inhibition, controlling for age and intracranial volume. Thinner parietal cortices predicted better performances on tests of verbal learning and memory, visuospatial functioning, and spatial planning and problem solving (β = −.14 to −.24, ps ≤.05). Age, spanning from 12 to 14 years, accounted for up to 6% of cortical thickness, suggesting substantial thinning during early adolescence, with males showing more accelerated thinning than females between ages 12 and 14. For both males and females, thinner parietal association cortices corresponded with better neurocognitive functioning above and beyond age alone.
doi:10.1017/S1355617713000878
PMCID: PMC3791607  PMID: 23947395
Adolescence; Cortical thickness; FreeSurfer; Neurocognitive testing; Neuropsychology; Normal development
4.  Increases in brain white matter abnormalities and subcortical gray matter are linked to CD4 recovery in HIV infection 
Journal of neurovirology  2013;19(4):393-401.
MRI alterations in the cerebral white (WM) and gray matter (GM) are common in HIV infection, even during successful combination antiretroviral therapy (CART), and their pathophysiology and clinical significance are unclear. We evaluated the association of these alterations with recovery of CD4+ T-cells. Seventy-five HIV-infected (HIV+) volunteers in the CNS HIV Anti-Retroviral Therapy Effects Research (CHARTER) study underwent brain MRI at two visits. Multi-channel morphometry yielded volumes of total cerebral WM, abnormal WM, cortical and subcortical GM, and ventricular and sulcal CSF. Multivariable linear regressions were used to predict volumetric changes with change in current CD4 and detectable HIV RNA. On average, the cohort (79% initially on CART) demonstrated loss of total cerebral WM alongside increases in abnormal WM and ventricular volumes. A greater extent of CD4 recovery was associated with increases in abnormal WM and subcortical GM volumes. Virologic suppression was associated with increased subcortical GM volume, independent of CD4 recovery. These findings suggest a possible link between brain alterations and immune recovery, distinct from the influence of virologic suppression. The association of increasing abnormal WM and subcortical GM volumes with CD4+ T-cell recovery suggests that neuroinflammation may be one mechanism in CNS pathogenesis.
doi:10.1007/s13365-013-0185-7
PMCID: PMC3776609  PMID: 23838849
Antiretroviral therapy; brain; CD4+ T-cell; immune recovery/reconstitution; inflammation; MRI
5.  Salivary Cortisol and Prefrontal Cortical Thickness in Middle-Aged Men: A Twin Study 
NeuroImage  2010;53(3):1093-1102.
Although glucocorticoid receptors are highly expressed in the prefrontal cortex, the hippocampus remains the predominant focus in the literature examining relationships between cortisol and brain. We examined phenotypic and genetic associations of cortisol levels with the thickness of prefrontal and anterior cingulate cortex regions, and with hippocampal volume in a sample of 388 middle-aged male twins who were 51–59 years old. Small but significant negative phenotypic associations were found between cortisol levels and the thickness of left dorsolateral (superior frontal gyrus, left rostral middle frontal gyrus) and ventrolateral (pars opercularis, pars triangularis, pars orbitalis) prefrontal regions, and right dorsolateral (superior frontal gyrus) and medial orbital frontal cortex. Most of the associations remained significant after adjusting for general cognitive ability, cardiovascular risk factors, and depression. Bivariate genetic analyses suggested that some of the associations were primarily accounted for by shared genetic influences; that is, some of the genes that tend to result in increased cortisol levels also tend to result in reduced prefrontal cortical thickness. Aging has been associated with reduced efficiency of hypothalamic-pituitary-adrenal function, with frontal lobe shrinkage, and with increases in health problems, but our present data do not allow us to determine the direction of effects. Moreover, the degree or the direction of the observed associations and the extent of their shared genetic underpinnings may well change as these individuals age. Longitudinal assessments are underway to elucidate the direction of the associations and the genetic underpinnings of longitudinal phenotypes for changes in cortisol and brain morphology.
doi:10.1016/j.neuroimage.2010.02.026
PMCID: PMC4034538  PMID: 20156572
heritability; magnetic resonance imaging (MRI); hippocampus; HPA axis structure; genetic correlation
6.  PhenX RISING: real world implementation and sharing of PhenX measures 
BMC Medical Genomics  2014;7:16.
Background
The purpose of this manuscript is to describe the PhenX RISING network and the site experiences in the implementation of PhenX measures into ongoing population-based genomic studies.
Methods
Eighty PhenX measures were implemented across the seven PhenX RISING groups, thirty-three of which were used at more than two sites, allowing for cross-site collaboration. Each site used between four and 37 individual measures and five of the sites are validating the PhenX measures through comparison with other study measures. Self-administered and computer-based administration modes are being evaluated at several sites which required changes to the original PhenX Toolkit protocols. A network-wide data use agreement was developed to facilitate data sharing and collaboration.
Results
PhenX Toolkit measures have been collected for more than 17,000 participants across the PhenX RISING network. The process of implementation provided information that was used to improve the PhenX Toolkit. The Toolkit was revised to allow researchers to select self- or interviewer administration when creating the data collection worksheets and ranges of specimens necessary to run biological assays has been added to the Toolkit.
Conclusions
The PhenX RISING network has demonstrated that the PhenX Toolkit measures can be implemented successfully in ongoing genomic studies. The next step will be to conduct gene/environment studies.
doi:10.1186/1755-8794-7-16
PMCID: PMC3994539  PMID: 24650325
PhenX; Phenotype; Epidemiology; Risk factors; Harmonization
7.  The NIH Toolbox Cognition Battery: Results from a Large Normative Developmental Sample (PING) 
Neuropsychology  2013;28(1):1-10.
Objective
The NIH Toolbox Cognition Battery (NTCB) was designed to provide a brief, efficient computerized test of key neuropsychological functions appropriate for use in children as young as 3 years of age. This report describes the performance of a large group of typically developing children and adolescents and examines the impact of age and sociocultural variables on test performance.
Method
The NTCB was administered to a sample of 1020 typically developing males and females ranging in age from 3 to 20 years, diverse in terms of socioeconomic status (SES) and race/ethnicity, as part of the new publicly accessible Pediatric Imaging, Neurocognition, and Genetics (PING) data resource, at 9 sites across the United States.
Results
General additive models of nonlinear age-functions were estimated from age-differences in test performance on the 8 NTCB subtests while controlling for family SES and genetic ancestry factors (GAFs). Age accounted for the majority of the variance across all NTCB scores, with additional significant contributions of gender on some measures, and of SES and race/ethnicity (GAFs) on all. After adjusting for age and gender, SES and GAFs explained a substantial proportion of the remaining unexplained variance in Picture Vocabulary scores.
Conclusions
The results highlight the sensitivity to developmental effects and efficiency of this new computerized assessment battery for neurodevelopmental research. Limitations are observed in the form of some ceiling effects in older children, some floor effects, particularly on executive function tests in the youngest participants, and evidence for variable measurement sensitivity to cultural/socioeconomic factors.
doi:10.1037/neu0000001
PMCID: PMC3925365  PMID: 24219608
Computerized Assessment; Cognitive Development; Socioeconomic Status
8.  A web-portal for interactive data exploration, visualization, and hypothesis testing 
Clinical research studies generate data that need to be shared and statistically analyzed by their participating institutions. The distributed nature of research and the different domains involved present major challenges to data sharing, exploration, and visualization. The Data Portal infrastructure was developed to support ongoing research in the areas of neurocognition, imaging, and genetics. Researchers benefit from the integration of data sources across domains, the explicit representation of knowledge from domain experts, and user interfaces providing convenient access to project specific data resources and algorithms. The system provides an interactive approach to statistical analysis, data mining, and hypothesis testing over the lifetime of a study and fulfills a mandate of public sharing by integrating data sharing into a system built for active data exploration. The web-based platform removes barriers for research and supports the ongoing exploration of data.
doi:10.3389/fninf.2014.00025
PMCID: PMC3972454  PMID: 24723882
data exploration; data sharing; genetics; data dictionary; imaging; hypothesis testing
9.  Brain development during the preschool years 
Neuropsychology review  2012;22(4):313-333.
The preschool years represent a time of expansive psychological growth, with the initial expression of many psychological abilities that will continue to be refined into young adulthood. Likewise, brain development during this age is characterized by its “blossoming” nature, showing some of its most dynamic and elaborative anatomical and physiological changes. In this article, we review human brain development during the preschool years, sampling scientific evidence from a variety of sources. First, we cover neurobiological foundations of early postnatal development, explaining some of the primary mechanisms seen at a larger scale within neuroimaging studies. Next, we review evidence from both structural and functional imaging studies, which now accounts for a large portion of our current understanding of typical brain development. Within anatomical imaging, we focus on studies of developing brain morphology and tissue properties, including diffusivity of white matter fiber tracts. We also present new data on changes during the preschool years in cortical area, thickness, and volume. Physiological brain development is then reviewed, touching on influential results from several different functional imaging and recording modalities in the preschool and early school-age years, including positron emission tomography (PET), electroencephalography (EEG) and event-related potentials (ERP), functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS). Here, more space is devoted to explaining some of the key methodological factors that are required for interpretation. We end with a section on multimodal and multidimensional imaging approaches, which we believe will be critical for increasing our understanding of brain development and its relationship to cognitive and behavioral growth in the preschool years and beyond.
doi:10.1007/s11065-012-9214-1
PMCID: PMC3511633  PMID: 23007644
10.  Caudate Volume Predicts Neurocognitive Performance in Youth with Heavy Prenatal Alcohol Exposure 
Background
Fetal alcohol spectrum disorders (FASD) result from heavy prenatal alcohol exposure, and are characterized, in some cases, by CNS anomalies and cognitive impairment. Regional patterns of neuroanatomical abnormalities suggest that alcohol exerts selective damage on the developing fetal brain. This study assessed brain-behavior relationships in a sample of youth with histories of heavy prenatal alcohol exposure. The aim was to characterize how structural brain alterations observed in our previous studies relate to cognitive deficits commonly reported in individuals with histories of heavy prenatal alcohol exposure.
Methods
Twenty-one youth (mean age 13 years) with histories of heavy prenatal alcohol exposure and seven non-exposed healthy comparison subjects underwent structural magnetic resonance imaging (MRI) and neurobehavioral testing. Regional brain volumes within the alcohol-exposed group were correlated with neuropsychological measures of cognitive control and verbal learning/recall, as these aspects of cognition have previously been shown to be vulnerable to alcohol teratogenesis.
Results
Between-group effect sizes revealed moderate to large cognitive performance and brain volume decrements in alcohol-exposed subjects, compared to typically developing peers. Within the alcohol-exposed group, volume of the caudate nuclei was the most consistent predictor of neuropsychological performance, after controlling for potentially confounding variables including total brain volume, IQ, and age.
Conclusions
These data are consistent with previous research associating gestational alcohol exposure with structural and functional changes of the caudate nucleus. Our findings extend this previous work by demonstrating that volume reductions of the caudate have behavioral relevance for this population, in relation to cognitive control and verbal learning and recall abilities.
doi:10.1111/j.1530-0277.2012.01811.x
PMCID: PMC3723132  PMID: 22551091
fetal alcohol spectrum disorders (FASD); fetal alcohol syndrome (FAS); brain-behavior correlations; verbal learning/recall; cognitive control
12.  Clinical factors related to brain structure in HIV: the CHARTER study 
Journal of neurovirology  2011;17(3):248-257.
Despite the widening use of combination anti-retroviral therapy (ART), neurocognitive impairment remains common among HIV-infected (HIV+) individuals. Associations between HIV-related neuromedical variables and magnetic resonance imaging indices of brain structural integrity may provide insight into the neural bases for these symptoms. A diverse HIV+ sample (n=251) was studied through the CNS HIV Antiretroviral Therapy Effects Research initiative. Multi-channel image analysis produced volumes of ventricular and sulcal cerebrospinal fluid (CSF), cortical and subcortical gray matter, total cerebral white matter, and abnormal white matter. Cross-sectional analyses employed a series of multiple linear regressions to model each structural volume as a function of severity of prior immunosuppression (CD4 nadir), current CD4 count, presence of detectable CSF HIV RNA, and presence of HCV antibodies; secondary analyses examined plasma HIV RNA, estimated duration of HIV infection, and cumulative exposure to ART. Lower CD4 nadir was related to most measures of the structural brain damage. Higher current CD4, unexpectedly, correlated with lower white and subcortical gray and increased CSF. Detectable CSF HIV RNA was related to less total white matter. HCV coinfection was associated with more abnormal white matter. Longer exposure to ART was associated with lower white matter and higher sulcal CSF. HIV neuromedical factors, including lower nadir, higher current CD4 levels, and detectable HIV RNA, were associated with white matter damage and variability in subcortical volumes. Brain structural integrity in HIV likely reflects dynamic effects of current immune status and HIV replication, superimposed on residual effects associated with severe prior immunosuppression.
doi:10.1007/s13365-011-0032-7
PMCID: PMC3702821  PMID: 21544705
HIV; MRI; Neuroimaging; Immunospupression
13.  A Multivariate Twin Study of Hippocampal Volume, Self-Esteem and Well-Being in Middle Aged Men 
Genes, Brain, and Behavior  2012;11(5):539-544.
Self-esteem and well-being are important for successful aging, and some evidence suggests that self-esteem and well-being are associated with hippocampal volume, cognition, and stress responsivity. Whereas most of this evidence is based on studies of older adults, we investigated self-esteem, well-being and hippocampal volume in 474 male middle-age twins. Self-esteem was significantly positively correlated with hippocampal volume (.09, p=.03 for left hippocampus, .10, p=.04 for right). Correlations for well-being were not significant (ps ≫.05). There were strong phenotypic correlations between self-esteem and well-being (.72, p<.001) and between left and right hippocampal volume (.72, p<.001). In multivariate genetic analyses, a 2-factor AE model with well-being and self-esteem on one factor and left and right hippocampal volumes on the other factor fit the data better than Cholesky, independent pathway or common pathway models. The correlation between the two genetic factors was .12 (p=.03); the correlation between the environmental factors was .09 (p>05). Our results indicate that largely different genetic and environmental factors underlie self-esteem and well-being on the one hand and hippocampal volume on the other.
doi:10.1111/j.1601-183X.2012.00789.x
PMCID: PMC3389179  PMID: 22471516
self-esteem; well-being; hippocampus; twins; heritability; aging
14.  Postnatal brain development: Structural imaging of dynamic neurodevelopmental processes 
Progress in brain research  2011;189:77-92.
After birth, there is striking biological and functional development of the brain’s fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain–behavior associations in children, including genetic variation, behavioral interventions, and hormonal variation associated with puberty. At present longitudinal studies are few, and we do not yet know how variability in individual trajectories of biological development in specific neural systems map onto similar variability in behavioral trajectories.
doi:10.1016/B978-0-444-53884-0.00019-1
PMCID: PMC3690327  PMID: 21489384
MRI; DTI; brain development; cognitive development; individual differences; fiber tracts
15.  Hierarchical Genetic Organization of Human Cortical Surface Area 
Science (New York, N.Y.)  2012;335(6076):1634-1636.
Surface area of the cerebral cortex is a highly heritable trait, yet little is known about genetic influences on regional cortical differentiation in humans. Using a data-driven, fuzzy clustering technique with magnetic resonance imaging data from 406 twins, we parceled cortical surface area into genetic subdivisions, creating a human brain atlas based solely on genetically informative data. Boundaries of the genetic divisions corresponded largely to meaningful structural and functional regions; however, the divisions represented previously undescribed phenotypes different from conventional (non–genetically based) parcellation systems. The genetic organization of cortical area was hierarchical, modular, and predominantly bilaterally symmetric across hemispheres. We also found that the results were consistent with human-specific regions being subdivisions of previously described, genetically based lobar regionalization patterns.
doi:10.1126/science.1215330
PMCID: PMC3690329  PMID: 22461613
16.  Functional interactions of HIV-infection and methamphetamine dependence during motor programming 
Psychiatry Research  2012;202(1):46-52.
Methamphetamine (METH) dependence is frequently comorbid with HIV infection and both have been linked to alterations of brain structure and function. In a previous study, we showed that the brain volume loss characteristic of HIV infection contrasts with METH-related volume increases in striatum and parietal cortex, suggesting distinct neurobiological responses to HIV and METH (Jernigan et al., 2005). fMRI has the potential to reveal functional interactions between the effects of HIV and METH. In the present study, 50 participants were studied in four groups: an HIV+ group, a recently METH dependent group, a dually affected group, and a group of unaffected community comparison subjects. An fMRI paradigm consisting of motor sequencing tasks of varying levels of complexity was administered to examine blood oxygenation level dependent (BOLD) changes. Within all groups, activity increased significantly with increasing task complexity in large clusters within sensorimotor and parietal cortex, basal ganglia, cerebellum, and cingulate. The task complexity effect was regressed on HIV status, METH status, and the HIVxMETH interaction term in a simultaneous multiple regression. HIV was associated with less complexity-related activation in striatum, whereas METH was associated with less complexity-related activation in parietal regions. Significant interaction effects were observed in both cortical and subcortical regions; and, contrary to expectations, the complexity-related activation was less aberrant in dually-affected than in single-risk participants, in spite of comparable levels of neurocognitive impairment among the clinical groups. Thus, HIV and METH dependence, perhaps through their effects on dopaminergic systems, may have opposing functional effects on neural circuits involved in motor programming.
doi:10.1016/j.pscychresns.2012.03.006
PMCID: PMC3380171  PMID: 22608157
FMRI; neuroimaging; dopamine; drug abuse
17.  Genetic and Environmental Influences of White and Gray Matter Signal Contrast: A New Phenotype for Imaging Genetics? 
Neuroimage  2012;60(3):1686-1695.
The estimation of cortical thickness is in part dependent on the degree of contrast in T1 signal intensity between white matter and gray matter along the cortical mantle. The ratio of white matter to gray matter signal (WM/GM contrast) has been found to vary as a function of age and Alzheimer’s disease status, suggesting a biological component to what might otherwise be labeled as a nuisance variable. The aim of the present study was to determine if measures of WM/GM contrast are genetically influenced, as well as the degree to which this phenotype may be related to the genetic and environmental determinants of cortical thickness. Participants were 514 male twins (130 monozygotic, 97 dizygotic pairs, and 60 unpaired individuals) from the Vietnam Era Twin Study of Aging. Ages ranged from 51 to 59 years. Measures of WM/GM contrast and cortical thickness were derived for 66 cortical regions of interest (ROI) using FreeSurfer-based methods. Univariate and bivariate twin analyses were used in order to estimate the heritability of WM/GM contrast, as well as the degree of shared genetic and environmental variance between WM/GM contrast and cortical thickness. WM/GM contrast was found to be significantly heritable in the majority of ROIs. The average heritability across individual ROIs was highest in the occipital lobe (.50), and lowest in the cingulate cortex (.24). Significant phenotypic correlations between WM/GM contrast and cortical thickness were observed for most of the ROIs. The majority of the phenotypic correlations were negative, ranging from −.11 to −.54. Of the 66 associations, only 17 significant genetic correlations were found, ranging from −.16 to −.34, indicating small amounts of shared genetic variance. The majority of the phenotypic correlations were accounted for by small unique environmental effects common between WM/GM contrast and cortical thickness. These findings demonstrate that like cortical thickness, WM/GM contrast is a genetically influenced brain structure phenotype. The lack of significant genetic correlations with cortical thickness suggests that this measure potentially represents a unique source of genetic variance, one that has yet to be explored by the field of imaging genetics.
doi:10.1016/j.neuroimage.2012.01.122
PMCID: PMC3328105  PMID: 22500923
18.  A Comparison of Heritability Maps of Cortical Surface Area and Thickness and the Influence of Adjustment for Whole Brain Measures: A Magnetic Resonance Imaging Twin Study 
Understanding the genetic and environmental contributions to measures of brain structure such as surface area and cortical thickness is important for a better understanding of the nature of brain-behavior relationships and changes due to development or disease. Continuous spatial maps of genetic influences on these structural features can contribute to our understanding of regional patterns of heritability, since it remains to be seen whether genetic contributions to brain structure respect the boundaries of any traditional parcellation approaches. Using data from magnetic resonance imaging scans collected on a large sample of monozygotic and dizygotic twins in the Vietnam Era Twin Study of Aging, we created maps of the heritability of areal expansion (a vertex-based area measure) and cortical thickness and examined the degree to which these maps were affected by adjustment for total surface area and mean cortical thickness. We also compared the approach of estimating regional heritability based on the average heritability of vertices within the region to the more traditional region-of-interest (ROI)-based approach. The results suggested high heritability across the cortex for areal expansion and, to a slightly lesser degree, for cortical thickness. There was a great deal of genetic overlap between global and regional measures for surface area, so maps of region-specific genetic influences on surface area revealed more modest heritabilities. There was greater inter-regional variability in heritabilities when calculated using the traditional ROI-based approach compared to summarizing vertex-by-vertex heritabilities within regions. Discrepancies between the approaches were greatest in small regions and tended to be larger for surface area than for cortical thickness measures. Implications regarding brain phenotypes for future genetic association studies are discussed.
doi:10.1017/thg.2012.3
PMCID: PMC3549553  PMID: 22856366
surface area; cortical thickness; region of interest; heritability maps
19.  Severe, demyelinating leukoencephalopathy in AIDS patients on antiretroviral therapy 
AIDS (London, England)  2002;16(7):1019-1029.
Objectives
To describe a severe form of demyelinating HIV-associated leukoencephalopathy in AIDS patients failing highly active antiretroviral therapy (HAART), its relationship to clinical and neuroimaging findings, and suggest hypotheses regarding pathogenesis.
Design and methods
AIDS patients who failed HAART and displayed severe leukoencephalopathy were included. All cases had detailed neuromedical, neuropsychological, neuroimaging and postmortem neuropathological examination. Immunocytochemical and PCR analyses were performed to determine brain HIV levels and to exclude other viruses.
Results
Seven recent autopsy cases of leukoencephalopathy in antiretroviral-experienced patients with AIDS were identified. Clinically, all were severely immunosuppressed, six (86%) had poorly controlled HIV replication despite combination antiretroviral therapy, and five (71%) had HIV-associated dementia. Neuropathologically, all seven had intense perivascular infiltration by HIV-gp41 immunoreactive monocytes/macrophages and lymphocytes, widespread myelin loss, axonal injury, microgliosis and astrogliosis. The extent of damage exceeds that described prior to the use of HAART. Brain tissue demonstrated high levels of HIV RNA but evidence of other pathogens, such as JC virus, Epstein–Barr virus, cytomegalovirus, human herpes virus type-8, and herpes simplex virus types 1 and 2, was absent. Comparison of the stages of pathology suggests a temporal sequence of events. In this model, white matter damage begins with perivascular infiltration by HIV-infected monocytes, which may occur as a consequence of antiretroviral-associated immune restoration. Intense infiltration by immune cells injures brain endothelial cells and is followed by myelin loss, axonal damage, and finally, astrogliosis.
Conclusions
Taken together, our findings provide evidence for the emergence of a severe form of HIV-associated leukoencephalopathy. This condition warrants further study and increased vigilance among those who provide care for HIV-infected individuals.
PMCID: PMC3548569  PMID: 11953468
HIV leukoencephalopathy; antiretroviral therapy
20.  Heritability of brain ventricle volume: Converging evidence from inconsistent results 
Neurobiology of aging  2010;33(1):1-8.
Twin studies generally show great consistency for the heritability of brain structures. Ironically, the lateral ventricles—perhaps the most reliably measured brain regions of interest—are the most inconsistent when it comes to estimating genetic influences on their volume. Heritability estimates in twin studies have ranged from zero to almost 0.80. Here we aggregate heritability estimates from extant twin studies, and we review and re-interpret some of the findings. Based on our revised estimates, we conclude that lateral ventricular volume is indeed heritable. The weighted average heritability of the revised estimates was 0.54. Although accumulated environmental insults might seem most logical as the predominant cause of age-related ventricular expansion, the data strongly suggest that genetic influences on lateral ventricular volume are increasing with age. Genetic influences accounted for 32-35% of the variance in lateral ventricular volume in childhood, but about 75% of the variance in late middle and older age. These conclusions have implications for the basic understanding of the genetic and environmental underpinnings of normative and pathological brain aging.
doi:10.1016/j.neurobiolaging.2010.02.007
PMCID: PMC3221930  PMID: 20363053
lateral ventricles; genetics; aging; structural MRI; twins; endophenotype; mild cognitive impairment; Alzheimer’s disease
21.  Genetic Influences on Cortical Regionalization in the Human Brain 
Neuron  2011;72(4):537-544.
Summary
Animal data demonstrate that the development of distinct cortical areas is influenced by genes that exhibit highly regionalized expression patterns. In this paper, we show genetic patterning of cortical surface area derived from MRI data from 406 adult human twins. We mapped genetic correlations of areal expansion between selected seed regions and all other cortical locations, with the selection of seed points based on results from animal studies. “Marching seeds” and a data-driven, hypothesis-free, fuzzy clustering approach provided convergent validation. The results reveal strong anterior-to-posterior graded, bilaterally symmetric patterns of regionalization, largely consistent with patterns previously reported in non-human mammalian models. Broad similarities in genetic patterning between rodents and humans may suggest a conservation of cortical patterning mechanisms while dissimilarities might reflect the functionalities most essential to each species.
doi:10.1016/j.neuron.2011.08.021
PMCID: PMC3222857  PMID: 22099457
22.  Genetic and Environmental Contributions to Regional Cortical Surface Area in Humans: A Magnetic Resonance Imaging Twin Study 
Cerebral Cortex (New York, NY)  2011;21(10):2313-2321.
Cortical surface area measures appear to be functionally relevant and distinct in etiology, development, and behavioral correlates compared with other size characteristics, such as cortical thickness. Little is known about genetic and environmental influences on individual differences in regional surface area in humans. Using a large sample of adult twins, we determined relative contributions of genes and environment on variations in regional cortical surface area as measured by magnetic resonance imaging before and after adjustment for genetic and environmental influences shared with total cortical surface area. We found high heritability for total surface area and, before adjustment, moderate heritability for regional surface areas. Compared with other lobes, heritability was higher for frontal lobe and lower for medial temporal lobe. After adjustment for total surface area, regionally specific genetic influences were substantially reduced, although still significant in most regions. Unlike other lobes, left frontal heritability remained high after adjustment. Thus, global and regionally specific genetic factors both influence cortical surface areas. These findings are broadly consistent with results from animal studies regarding the evolution and development of cortical patterning and may guide future research into specific environmental and genetic determinants of variation among humans in the surface area of particular regions.
doi:10.1093/cercor/bhr013
PMCID: PMC3169660  PMID: 21378112
cortex; cortical thickness; heritability
23.  Genetic Patterns of Correlation Among Subcortical Volumes in Humans: Results From a Magnetic Resonance Imaging Twin Study 
Human Brain Mapping  2011;32(4):641-653.
Little is known about genetic influences on the volume of subcortical brain structures in adult humans, particularly whether there is regional specificity of genetic effects. Understanding patterns of genetic covariation among volumes of subcortical structures may provide insight into the development of individual differences that have consequences for cognitive and emotional behavior and neuropsychiatric disease liability. We measured the volume of 19 subcortical structures (including brain and ventricular regions) in 404 twins (110 monozygotic and 92 dizygotic pairs) from the Vietnam Era Twin Study of Aging and calculated the degree of genetic correlation among these volumes. We then examined the patterns of genetic correlation through hierarchical cluster analysis and by principal components analysis. We found that a model with four genetic factors best fit the data: a Basal Ganglia/Thalamus factor; a Ventricular factor; a Limbic factor; and a Nucleus Accumbens factor. Homologous regions from each hemisphere loaded on the same factors. The observed patterns of genetic correlation suggest the influence of multiple genetic influences. There is a genetic organization among structures which distinguishes between brain and cerebrospinal fluid spaces and between different subcortical regions. Further study is needed to understand this genetic patterning and whether it reflects influences on early development, functionally dependent patterns of growth or pruning, or regionally specific losses due to genes involved in aging, stress response, or disease.
doi:10.1002/hbm.21054
PMCID: PMC3403693  PMID: 20572207
behavioral genetics; hippocampus; amygdala; striatum; pallidum; caudate; putamen; thalamus; ventricles
24.  Are Time- and Event-based Prospective Memory Comparably Affected in HIV Infection?† 
According to the multi-process theory of prospective memory (ProM), time-based tasks rely more heavily on strategic processes dependent on prefrontal systems than do event-based tasks. Given the prominent frontostriatal pathophysiology of HIV infection, one would expect HIV-infected individuals to demonstrate greater deficits in time-based versus event-based ProM. However, the two prior studies examining this question have produced variable results. We evaluated this hypothesis in 143 individuals with HIV infection and 43 demographically similar seronegative adults (HIV−) who completed the research version of the Memory for Intentions Screening Test, which yields parallel subscales of time- and event-based ProM. Results showed main effects of HIV serostatus and cue type, but no interaction between serostatus and cue. Planned pair-wise comparisons showed a significant effect of HIV on time-based ProM and a trend-level effect on event-based ProM that was driven primarily by the subset of participants with HIV-associated neurocognitive disorders. Nevertheless, time-based ProM was more strongly correlated with measures of executive functions, attention/working memory, and verbal fluency in HIV-infected persons. Although HIV-associated deficits in time- and event-based ProM appear to be of comparable severity, the cognitive architecture of time-based ProM may be more strongly influenced by strategic monitoring and retrieval processes.
doi:10.1093/arclin/acr020
PMCID: PMC3081684  PMID: 21459901
AIDS dementia complex; Episodic memory; Executive functions; Neuropsychological assessment
25.  Presence of ApoE ε4 Allele Associated with Thinner Frontal Cortex in Middle Age 
Journal of Alzheimer's Disease  2011;26(Suppl 3):49-60.
The presence of an ApoE ε4 allele (ε4+) increases the risk of developing Alzheimer’s disease (AD). Previous studies support an adverse relationship between ε4+ status and brain structure and function in mild cognitive impairment and AD; in contrast, the presence of an ε2 allele may be protective. Whether these findings reflect disease-related effects or pre-existing endophenotypes, however, remains unclear. The present study examined the influence of ApoE allele status on brain structure solely during middle-age in a large, national sample. Participants were 482 men, ages 51–59, from the Vietnam Era Twin Study of Aging (VETSA). T1-weighted images were used in volumetric segmentation and cortical surface reconstruction methods to measure regional volume and thickness. Primary linear mixed effects models predicted structural measures with ApoE status (ε3/3, ε2/3, ε3/4) and control variables for effects of site, non-independence of twin data, age, and average cranial vault or cortical thickness. Relative to the ε3/3 group, the ε3/4 group demonstrated significantly thinner cortex in superior frontal and left rostral and right caudal midfrontal regions; there were no significant effects of ε4 status on any temporal lobe measures. The ε2/3 group demonstrated significantly thicker right parahippocampal cortex relative to the ε3/3 group. The ApoE ε4 allele may influence cortical thickness in frontal areas, which are later developing regions thought to be more susceptible to the natural aging process. Previous conflicting findings for mesial temporal regions may be driven by the inclusion of older individuals, who may evidence preclinical manifestations of disease, and by unexamined moderators of ε4-related effects. The presence of the ε2 allele was related to thicker cortex, supporting a protective role. Ongoing follow-up of the VETSA sample may shed light on the potential for age- and disease-related mediation of the influence of ApoE allele status.
doi:10.3233/JAD-2011-0002
PMCID: PMC3302177  PMID: 21971450
Magnetic Resonance Imaging; Cerebral Cortex; Brain; Frontal Lobe; Apolipoproteins E; Apolipoprotein E2; Apolipoprotein E3; Apolipoprotein E4; Genetic Association Studies; Aging

Results 1-25 (35)