Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Role of the G-box element in regulation of chlorophyll biosynthesis in Arabidopsis roots 
Plant Signaling & Behavior  2012;7(8):922-926.
Regulation of chlorophyll metabolism comprises strong transcriptional control together with a range of post-translational mechanisms during chloroplast biogenesis. Recently we reported that chlorophyll biosynthesis in Arabidopsis thaliana roots is regulated by auxin/cytokinin signaling via the combination of two transcription factors, LONG-HYPOCOTYL5 (HY5) and GOLDEN2-LIKE2 (GLK2). In this study, we examined the involvement of cis-elements in the expression of chlorophyll biosynthesis genes. Searches for predicted cis-elements in key chlorophyll biosynthesis genes and their co-expressed genes revealed coexistence of the G-box motif and the CCAATC motif, which may be targeted by HY5 and GLK factors, respectively, in their promoter regions. Deletion of the G-box from the promoter of the CHLH gene encoding the H subunit of Mg-chelatase resulted in the absence of its expression in roots but not in shoots, showing a differing involvement of the G-box in CHLH expression between shoots and roots. Our data suggest that transcription factors and cis-elements participating chlorophyll biosynthesis are substantially changed during organ differentiation, which may be linked to the differentiation of plastids.
PMCID: PMC3474686  PMID: 22827944
cis-element; chlorophyll biosynthesis; co-expression network; photosynthesis; transcriptional regulation
2.  Disrupting the bimolecular binding of the haem-binding protein 5 (AtHBP5) to haem oxygenase 1 (HY1) leads to oxidative stress in Arabidopsis  
Journal of Experimental Botany  2012;63(16):5967-5978.
The Arabidopsis thaliana L. SOUL/haem-binding proteins, AtHBPs belong to a family of five members. The Arabidopsis cytosolic AtHBP1 (At1g17100) and AtHBP2 (At2g37970) have been shown to bind porphyrins and metalloporphyrins including haem. In contrast to the cytosolic localization of these haem-binding proteins, AtHBP5 (At5g20140) encodes a protein with an N-terminal transit peptide that probably directs targeting to the chloroplast. In this report, it is shown that AtHBP5 binds haem and interacts with the haem oxygenase, HY1, in both yeast two-hybrid and BiFC assays. The expression of HY1 is repressed in the athbp5 T-DNA knockdown mutant and the accumulation of H2O2 is observed in athbp5 seedlings that are treated with methyl jasmonate (MeJA), a ROS-producing stress hormone. In contrast, AtHBP5 over-expressing plants show a decreased accumulation of H2O2 after MeJA treatment compared with the controls. It is proposed that the interaction between the HY1 and AtHBP5 proteins participate in an antioxidant pathway that might be mediated by reaction products of haem catabolism.
PMCID: PMC3467301  PMID: 22991161
Arabidopsis; haem oxygenase; oxidative stress; haem-binding protein
3.  Tetrapyrrole Metabolism in Arabidopsis thaliana 
Higher plants produce four classes of tetrapyrroles, namely, chlorophyll (Chl), heme, siroheme, and phytochromobilin. In plants, tetrapyrroles play essential roles in a wide range of biological activities including photosynthesis, respiration and the assimilation of nitrogen/sulfur. All four classes of tetrapyrroles are derived from a common biosynthetic pathway that resides in the plastid. In this article, we present an overview of tetrapyrrole metabolism in Arabidopsis and other higher plants, and we describe all identified enzymatic steps involved in this metabolism. We also summarize recent findings on Chl biosynthesis and Chl breakdown. Recent advances in this field, in particular those on the genetic and biochemical analyses of novel enzymes, prompted us to redraw the tetrapyrrole metabolic pathways. In addition, we also summarize our current understanding on the regulatory mechanisms governing tetrapyrrole metabolism. The interactions of tetrapyrrole biosynthesis and other cellular processes including the plastid-to-nucleus signal transduction are discussed.
PMCID: PMC3268503  PMID: 22303270
4.  Genomic Structure of an Economically Important Cyanobacterium, Arthrospira (Spirulina) platensis NIES-39 
A filamentous non-N2-fixing cyanobacterium, Arthrospira (Spirulina) platensis, is an important organism for industrial applications and as a food supply. Almost the complete genome of A. platensis NIES-39 was determined in this study. The genome structure of A. platensis is estimated to be a single, circular chromosome of 6.8 Mb, based on optical mapping. Annotation of this 6.7 Mb sequence yielded 6630 protein-coding genes as well as two sets of rRNA genes and 40 tRNA genes. Of the protein-coding genes, 78% are similar to those of other organisms; the remaining 22% are currently unknown. A total 612 kb of the genome comprise group II introns, insertion sequences and some repetitive elements. Group I introns are located in a protein-coding region. Abundant restriction-modification systems were determined. Unique features in the gene composition were noted, particularly in a large number of genes for adenylate cyclase and haemolysin-like Ca2+-binding proteins and in chemotaxis proteins. Filament-specific genes were highlighted by comparative genomic analysis.
PMCID: PMC2853384  PMID: 20203057
cyanobacteria; Arthrospira; health supplement; genome; cAMP

Results 1-4 (4)