PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Hematodinium sp. and its bacteria-like endosymbiont in European brown shrimp (Crangon crangon) 
Aquatic Biosystems  2012;8:24.
Background
Parasitic dinoflagellates of the genus Hematodinium are significant pathogens affecting the global decapod crustacean fishery. Despite this, considerable knowledge gaps exist regarding the life history of the pathogen in vivo, and the role of free living life stages in transmission to naïve hosts.
Results
In this study, we describe a novel disease in European brown shrimp (Crangon crangon) caused by infection with a parasitic dinoflagellate of the genus Hematodinium. This is the second example host within the Infraorder Caridea (shrimp) and significantly, the first description within the superfamily Crangonoidea. Based upon analysis of the rRNA gene (SSU) and spacers (ITS1), the parasite in C. crangon is the same as that previously described infecting Nephrops norvegicus and Cancer pagurus from European seas, and to the parasite infecting several other commercially important crab species in the Northern Hemisphere. The parasite is however distinct from the type species, H. perezi, found infecting type hosts (Carcinus maenas and Liocarcinus depurator) from nearby sites within Europe. Despite these similarities, the current study has also described for the first time, a bacteria-like endosymbiont within dinospore stages of the parasite infecting shrimp. The endosymbionts were either contained individually within electron lucent vacuoles within the parasite cell cytoplasm, or remained in direct contact with the parasite cytoplasm or in some cases, the nucleoplasm. In all of these cases, no apparent detrimental effects of colonization were observed within the parasite cell.
Conclusions
The presence of bacteria-like endosymbionts within dinospore life stages presumes that the relationship between the dinoflagellate and the bacteria is extended beyond the period of liberation of spores from the infected host shrimp. In this context, a potential role of endosymbiosis in the survival of free-living stages of the parasite is possible. The finding offers a further intriguing insight into the life history of this enigmatic pathogen of marine crustacean hosts and highlights a potential for mixotrophy in the parasitic dinoflagellates contained within the genus Hematodinium.
doi:10.1186/2046-9063-8-24
PMCID: PMC3487949  PMID: 22958655
ITS1; Phylogenetics; Dinoflagellate; Bacteria; Crustacean; Disease; Fishery
2.  Zoonotic Disease Pathogens in Fish Used for Pedicure 
Emerging Infectious Diseases  2012;18(6):1006-1008.
“Doctor” fish might not be such good doctors after all. These fish are used for the increasingly popular spa treatment called fish pedicures. During these sessions, spa patrons immerse their feet in water, allowing the live fish to feed on dead skin, mainly for cosmetic reasons. However, examinations of doctor fish destined for these spas found that they can carry harmful bacteria. Thus, although reports of human infection after fish pedicures are few, there may be some risks. Spa patrons who have underlying medical conditions (such as diabetes, immunosuppression, or even simple breaks in the skin) are already discouraged from taking such treatments. However, spas that offer fish pedicures should also consider using only disease-free fish reared in controlled facilities under high standards of husbandry and welfare.
doi:10.3201/eid1806.111782
PMCID: PMC3358165  PMID: 22608013
pathogen; Vibrio vulnificus; Streptococcus agalactiae; bacteria; fish pedicure; doctor fish; Garra rufa; United Kingdom; spa; zoonoses
3.  High Prevalence of Multidrug-Tolerant Bacteria and Associated Antimicrobial Resistance Genes Isolated from Ornamental Fish and Their Carriage Water 
PLoS ONE  2009;4(12):e8388.
Background
Antimicrobials are used to directly control bacterial infections in pet (ornamental) fish and are routinely added to the water these fish are shipped in to suppress the growth of potential pathogens during transport.
Methodology/Principal Findings
To assess the potential effects of this sustained selection pressure, 127 Aeromonas spp. isolated from warm and cold water ornamental fish species were screened for tolerance to 34 antimicrobials. Representative isolates were also examined for the presence of 54 resistance genes by a combination of miniaturized microarray and conventional PCR. Forty-seven of 94 Aeromonas spp. isolates recovered from tropical ornamental fish and their carriage water were tolerant to ≥15 antibiotics, representing seven or more different classes of antimicrobial. The quinolone and fluoroquinolone resistance gene, qnrS2, was detected at high frequency (37% tested recent isolates were positive by PCR). Class 1 integrons, IncA/C broad host range plasmids and a range of other antibiotic resistance genes, including floR, blaTEM−1, tet(A), tet(D), tet(E), qacE2, sul1, and a number of different dihydrofolate reductase and aminoglycoside transferase coding genes were also detected in carriage water samples and bacterial isolates.
Conclusions
These data suggest that ornamental fish and their carriage water act as a reservoir for both multi-resistant bacteria and resistance genes.
doi:10.1371/journal.pone.0008388
PMCID: PMC2793012  PMID: 20027306

Results 1-3 (3)