PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("Muñoz, jesus")
1.  Climate-Induced Range Shifts and Possible Hybridisation Consequences in Insects 
PLoS ONE  2013;8(11):e80531.
Many ectotherms have altered their geographic ranges in response to rising global temperatures. Current range shifts will likely increase the sympatry and hybridisation between recently diverged species. Here we predict future sympatric distributions and risk of hybridisation in seven Mediterranean ischnurid damselfly species (I. elegans, I. fountaineae, I. genei, I. graellsii, I. pumilio, I. saharensis and I. senegalensis). We used a maximum entropy modelling technique to predict future potential distribution under four different Global Circulation Models and a realistic emissions scenario of climate change. We carried out a comprehensive data compilation of reproductive isolation (habitat, temporal, sexual, mechanical and gametic) between the seven studied species. Combining the potential distribution and data of reproductive isolation at different instances (habitat, temporal, sexual, mechanical and gametic), we infer the risk of hybridisation in these insects. Our findings showed that all but I. graellsii will decrease in distributional extent and all species except I. senegalensis are predicted to have northern range shifts. Models of potential distribution predicted an increase of the likely overlapping ranges for 12 species combinations, out of a total of 42 combinations, 10 of which currently overlap. Moreover, the lack of complete reproductive isolation and the patterns of hybridisation detected between closely related ischnurids, could lead to local extinctions of native species if the hybrids or the introgressed colonising species become more successful.
doi:10.1371/journal.pone.0080531
PMCID: PMC3829986  PMID: 24260411
2.  Modeling Species Distributions from Heterogeneous Data for the Biogeographic Regionalization of the European Bryophyte Flora 
PLoS ONE  2013;8(2):e55648.
The definition of biogeographic regions provides a fundamental framework for a range of basic and applied questions in biogeography, evolutionary biology, systematics and conservation. Previous research suggested that environmental forcing results in highly congruent regionalization patterns across taxa, but that the size and number of regions depends on the dispersal ability of the taxa considered. We produced a biogeographic regionalization of European bryophytes and hypothesized that (1) regions defined for bryophytes would differ from those defined for other taxa due to the highly specific eco-physiology of the group and (2) their high dispersal ability would result in the resolution of few, large regions. Species distributions were recorded using 10,000 km2 MGRS pixels. Because of the lack of data across large portions of the area, species distribution models employing macroclimatic variables as predictors were used to determine the potential composition of empty pixels. K-means clustering analyses of the pixels based on their potential species composition were employed to define biogeographic regions. The optimal number of regions was determined by v-fold cross-validation and Moran’s I statistic. The spatial congruence of the regions identified from their potential bryophyte assemblages with large-scale vegetation patterns is at odds with our primary hypothesis. This reinforces the notion that post-glacial migration patterns might have been much more similar in bryophytes and vascular plants than previously thought. The substantially lower optimal number of clusters and the absence of nested patterns within the main biogeographic regions, as compared to identical analyses in vascular plants, support our second hypothesis. The modelling approach implemented here is, however, based on many assumptions that are discussed but can only be tested when additional data on species distributions become available, highlighting the substantial importance of developing integrated mapping projects for all taxa in key biogeographically areas of Europe, and the Mediterranean peninsulas in particular.
doi:10.1371/journal.pone.0055648
PMCID: PMC3569459  PMID: 23409015
3.  Molecular Species Delimitation in the Racomitrium canescens Complex (Grimmiaceae) and Implications for DNA Barcoding of Species Complexes in Mosses 
PLoS ONE  2013;8(1):e53134.
In bryophytes a morphological species concept is still most commonly employed, but delimitation of closely related species based on morphological characters is often difficult. Here we test morphological species circumscriptions in a species complex of the moss genus Racomitrium, the R. canescens complex, based on variable DNA sequence markers from the plastid (rps4-trnT-trnL region) and nuclear (nrITS) genomes. The extensive morphological variability within the complex has led to different opinions about the number of species and intraspecific taxa to be distinguished. Molecular phylogenetic reconstructions allowed to clearly distinguish all eight currently recognised species of the complex plus a ninth species that was inferred to belong to the complex in earlier molecular analyses. The taxonomic significance of intraspecific sequence variation is discussed. The present molecular data do not support the division of the R. canescens complex into two groups of species (subsections or sections). Most morphological characters, albeit being in part difficult to apply, are reliable for species identification in the R. canescens complex. However, misidentification of collections that were morphologically intermediate between species questioned the suitability of leaf shape as diagnostic character. Four partitions of the molecular markers (rps4-trnT, trnT-trnL, ITS1, ITS2) that could potentially be used for molecular species identification (DNA barcoding) performed almost equally well concerning amplification and sequencing success. Of these, ITS1 provided the highest species discrimination capacity and should be considered as a DNA barcoding marker for mosses, especially in complexes of closely related species. Molecular species identification should be complemented by redefining morphological characters, to develop a set of easy-to-use molecular and non-molecular identification tools for improving biodiversity assessments and ecological research including mosses.
doi:10.1371/journal.pone.0053134
PMCID: PMC3544804  PMID: 23341927
4.  Legume Diversity Patterns in West Central Africa: Influence of Species Biology on Distribution Models 
PLoS ONE  2012;7(7):e41526.
Objectives
Species Distribution Models (SDMs) are used to produce predictions of potential Leguminosae diversity in West Central Africa. Those predictions are evaluated subsequently using expert opinion. The established methodology of combining all SDMs is refined to assess species diversity within five defined vegetation types. Potential species diversity is thus predicted for each vegetation type respectively. The primary aim of the new methodology is to define, in more detail, areas of species richness for conservation planning.
Methodology
Using Maxent, SDMs based on a suite of 14 environmental predictors were generated for 185 West Central African Leguminosae species, each categorised according to one of five vegetation types: Afromontane, coastal, non-flooded forest, open formations, or riverine forest. The relative contribution of each environmental variable was compared between different vegetation types using a nonparametric Kruskal-Wallis analysis followed by a post-hoc Kruskal-Wallis Paired Comparison contrast. Legume species diversity patterns were explored initially using the typical method of stacking all SDMs. Subsequently, five different ensemble models were generated by partitioning SDMs according to vegetation category. Ecological modelers worked with legume specialists to improve data integrity and integrate expert opinion in the interpretation of individual species models and potential species richness predictions for different vegetation types.
Results/Conclusions
Of the 14 environmental predictors used, five showed no difference in their relative contribution to the different vegetation models. Of the nine discriminating variables, the majority were related to temperature variation. The set of variables that played a major role in the Afromontane species diversity model differed significantly from the sets of variables of greatest relative important in other vegetation categories. The traditional approach of stacking all SDMs indicated overall centers of diversity in the region but the maps indicating potential species richness by vegetation type offered more detailed information on which conservation efforts can be focused.
doi:10.1371/journal.pone.0041526
PMCID: PMC3402427  PMID: 22911808
5.  Do Marmorkrebs, Procambarus fallax f. virginalis, threaten freshwater Japanese ecosystems? 
Aquatic Biosystems  2012;8:13.
Background
One marbled crayfish, Marmorkrebs, Procambarus fallax f. virginalis (Hagen, 1870), was discovered in a natural ecosystem in Japan in 2006. Because Marmorkrebs are parthenogenetic, they could establish a population from only a single individual, and thus pose a risk for becoming established in Japan, as they have in other countries. There are two major reasons to be concerned about the possibility of Marmorkrebs establishing viable populations in Japan. First, Japan’s only endemic crayfish, Cambaroides japonicus (De Haan, 1841), lives throughout Hokkaido and is endangered. Introduced Marmorkrebs are potential competitors that could further threaten C. japonicus. Second, Marmorkrebs live in rice paddies in Madagascar and consume rice. Marmorkrebs populations could reduce rice yields in Japan.
Results
We created five models in MaxEnt of the potential distribution of Marmorkrebs in Japan. All models showed eastern Honshu, Shikoku and Kyushu contain suitable habitats for Marmorkrebs. Hokkaido, the main habitat for C. japonicus, contained much less suitable habitat in most models, but is where the only Marmorkrebs in Japan to date was found.
Conclusions
Marmorkrebs appear to be capable of establishing populations in Japan if introduced. They appear to pose minimal threat to C. japonicus, but may negatively affect rice production.
doi:10.1186/2046-9063-8-13
PMCID: PMC3460755  PMID: 22738196
6.  Do Stacked Species Distribution Models Reflect Altitudinal Diversity Patterns? 
PLoS ONE  2012;7(3):e32586.
The objective of this study was to evaluate the performance of stacked species distribution models in predicting the alpha and gamma species diversity patterns of two important plant clades along elevation in the Andes. We modelled the distribution of the species in the Anthurium genus (53 species) and the Bromeliaceae family (89 species) using six modelling techniques. We combined all of the predictions for the same species in ensemble models based on two different criteria: the average of the rescaled predictions by all techniques and the average of the best techniques. The rescaled predictions were then reclassified into binary predictions (presence/absence). By stacking either the original predictions or binary predictions for both ensemble procedures, we obtained four different species richness models per taxa. The gamma and alpha diversity per elevation band (500 m) was also computed. To evaluate the prediction abilities for the four predictions of species richness and gamma diversity, the models were compared with the real data along an elevation gradient that was independently compiled by specialists. Finally, we also tested whether our richness models performed better than a null model of altitudinal changes of diversity based on the literature. Stacking of the ensemble prediction of the individual species models generated richness models that proved to be well correlated with the observed alpha diversity richness patterns along elevation and with the gamma diversity derived from the literature. Overall, these models tend to overpredict species richness. The use of the ensemble predictions from the species models built with different techniques seems very promising for modelling of species assemblages. Stacking of the binary models reduced the over-prediction, although more research is needed. The randomisation test proved to be a promising method for testing the performance of the stacked models, but other implementations may still be developed.
doi:10.1371/journal.pone.0032586
PMCID: PMC3292561  PMID: 22396782
7.  Human Papillomavirus (HPV) infection in pregnant women and mother-to-child transmission of genital HPV genotypes: a prospective study in Spain 
Background
Studies on HPV infection in pregnant women and HPV transmission to the child have yielded inconsistent results.
Methods
To estimate mother-to-child HPV transmission we carried out a prospective cohort study that included 66 HPV-positive and 77 HPV-negative pregnant women and their offspring attending a maternity hospital in Barcelona. To estimate HPV prevalence and genotype distribution in pregnancy we also carried out a related screening survey of cervical HPV-DNA detection among 828 pregnant women. Cervical cells from the mother were collected at pregnancy (mean of 31 weeks) and at the 6-week post-partum visit. Exfoliated cells from the mouth and external genitalia of the infants were collected around birth, at the 6-week post-partum visit, and around 3, 6, 12, and 24 months of age. All samples were tested for HPV using PCR. Associations between potential determinants of HPV infection in pregnant women and of HPV positivity in infants were also explored by logistic regression modelling.
Results
Overall cervical HPV-DNA detection in pregnant women recruited in the HPV screening survey was 6.5% (54/828). Sexual behavior-related variables, previous histories of genital warts or sexually transmitted infections, and presence of cytological abnormalities were statistically significantly and positively associated with HPV DNA detection in pregnant women recruited in the cohort. At 418 infant visits and a mean follow-up time of 14 months, 19.7% of infants born to HPV-positive mothers and 16.9% of those born to HPV-negative mothers tested HPV positive at some point during infants' follow-up. The most frequently detected genotype both in infants and mothers was HPV-16, after excluding untyped HPV infections. We found a strong and statistically significant association between mother's and child's HPV status at the 6-week post-partum visit. Thus, children of mothers' who were HPV-positive at the post-partum visit were about 5 times more likely to test HPV-positive than children of corresponding HPV-negative mothers (p = 0.02).
Conclusion
This study confirms that the risk of vertical transmission of HPV genotypes is relatively low. HPV persistence in infants is a rare event. These data also indicate that vertical transmission may not be the sole source of HPV infections in infants and provides partial evidence for horizontal mother-to-child HPV transmission.
doi:10.1186/1471-2334-9-74
PMCID: PMC2696457  PMID: 19473489
8.  Ocean Surface Winds Drive Dynamics of Transoceanic Aerial Movements 
PLoS ONE  2008;3(8):e2928.
Global wind patterns influence dispersal and migration processes of aerial organisms, propagules and particles, which ultimately could determine the dynamics of colonizations, invasions or spread of pathogens. However, studying how wind-mediated movements actually happen has been hampered so far by the lack of high resolution global wind data as well as the impossibility to track aerial movements. Using concurrent data on winds and actual pathways of a tracked seabird, here we show that oceanic winds define spatiotemporal pathways and barriers for large-scale aerial movements. We obtained wind data from NASA SeaWinds scatterometer to calculate wind cost (impedance) models reflecting the resistance to the aerial movement near the ocean surface. We also tracked the movements of a model organism, the Cory's shearwater (Calonectris diomedea), a pelagic bird known to perform long distance migrations. Cost models revealed that distant areas can be connected through “wind highways” that do not match the shortest great circle routes. Bird routes closely followed the low-cost “wind-highways” linking breeding and wintering areas. In addition, we found that a potential barrier, the near surface westerlies in the Atlantic sector of the Intertropical Convergence Zone (ITCZ), temporally hindered meridional trans-equatorial movements. Once the westerlies vanished, birds crossed the ITCZ to their winter quarters. This study provides a novel approach to investigate wind-mediated movements in oceanic environments and shows that large-scale migration and dispersal processes over the oceans can be largely driven by spatiotemporal wind patterns.
doi:10.1371/journal.pone.0002928
PMCID: PMC2491555  PMID: 18698354

Results 1-8 (8)