PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("mckee, Boyd A")
1.  Central Role of Dynamic Tidal Biofilms Dominated by Aerobic Hydrocarbonoclastic Bacteria and Diatoms in the Biodegradation of Hydrocarbons in Coastal Mudflats 
Applied and Environmental Microbiology  2012;78(10):3638-3648.
Mudflats and salt marshes are habitats at the interface of aquatic and terrestrial systems that provide valuable services to ecosystems. Therefore, it is important to determine how catastrophic incidents, such as oil spills, influence the microbial communities in sediment that are pivotal to the function of the ecosystem and to identify the oil-degrading microbes that mitigate damage to the ecosystem. In this study, an oil spill was simulated by use of a tidal chamber containing intact diatom-dominated sediment cores from a temperate mudflat. Changes in the composition of bacteria and diatoms from both the sediment and tidal biofilms that had detached from the sediment surface were monitored as a function of hydrocarbon removal. The hydrocarbon concentration in the upper 1.5 cm of sediments decreased by 78% over 21 days, with at least 60% being attributed to biodegradation. Most phylotypes were minimally perturbed by the addition of oil, but at day 21, there was a 10-fold increase in the amount of cyanobacteria in the oiled sediment. Throughout the experiment, phylotypes associated with the aerobic degradation of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs) (Cycloclasticus) and alkanes (Alcanivorax, Oleibacter, and Oceanospirillales strain ME113), substantively increased in oiled mesocosms, collectively representing 2% of the pyrosequences in the oiled sediments at day 21. Tidal biofilms from oiled cores at day 22, however, consisted mostly of phylotypes related to Alcanivorax borkumensis (49% of clones), Oceanospirillales strain ME113 (11% of clones), and diatoms (14% of clones). Thus, aerobic hydrocarbon biodegradation is most likely to be the main mechanism of attenuation of crude oil in the early weeks of an oil spill, with tidal biofilms representing zones of high hydrocarbon-degrading activity.
doi:10.1128/AEM.00072-12
PMCID: PMC3346363  PMID: 22407688
2.  Marine crude-oil biodegradation: a central role for interspecies interactions 
Aquatic Biosystems  2012;8:10.
The marine environment is highly susceptible to pollution by petroleum, and so it is important to understand how microorganisms degrade hydrocarbons, and thereby mitigate ecosystem damage. Our understanding about the ecology, physiology, biochemistry and genetics of oil-degrading bacteria and fungi has increased greatly in recent decades; however, individual populations of microbes do not function alone in nature. The diverse array of hydrocarbons present in crude oil requires resource partitioning by microbial populations, and microbial modification of oil components and the surrounding environment will lead to temporal succession. But even when just one type of hydrocarbon is present, a network of direct and indirect interactions within and between species is observed. In this review we consider competition for resources, but focus on some of the key cooperative interactions: consumption of metabolites, biosurfactant production, provision of oxygen and fixed nitrogen. The emphasis is largely on aerobic processes, and especially interactions between bacteria, fungi and microalgae. The self-construction of a functioning community is central to microbial success, and learning how such “microbial modules” interact will be pivotal to enhancing biotechnological processes, including the bioremediation of hydrocarbons.
doi:10.1186/2046-9063-8-10
PMCID: PMC3465203  PMID: 22591596
Hydrocarbon; Crude oil; Salt marsh; Marine microbiology; Biodegradation; Bioremediation; Microbial interactions; Biogeochemistry; Alcanivorax
3.  Resistance and resilience of benthic biofilm communities from a temperate saltmarsh to desiccation and rewetting 
The ISME journal  2010;5(1):30-41.
Periods of desiccation and rewetting are regular, yet stressful events encountered by saltmarsh microbial communities. To examine the resistance and resilience of microbial biofilms to such stresses, sediments from saltmarsh creeks were allowed to desiccate for 23 days, followed by rewetting for 4 days, whereas control sediments were maintained under a natural tidal cycle. In the top 2 mm of the dry sediments, salinity increased steadily from 36 to 231 over 23 days, and returned to seawater salinity on rewetting. After 3 days, desiccated sediments had a lower chlorophyll a (Chl a) fluorescence signal as benthic diatoms ceased to migrate to the surface, with a recovery in cell migration and Chl a fluorescence on rewetting. Extracellular β-glucosidase and aminopeptidase activities decreased within the first week of drying, but increased sharply on rewetting. The bacterial community in the desiccating sediment changed significantly from the controls after 14 days of desiccation (salinity 144). Rewetting did not cause a return to the original community composition, but led to a further change. Pyrosequencing analysis of 16S rRNA genes amplified from the sediment revealed diverse microbial responses, for example desiccation enabled haloversatile Marinobacter species to increase their relative abundance, and thus take advantage of rewetting to grow rapidly and dominate the community. A temporal sequence of effects of desiccation and rewetting were thus observed, but the most notable feature was the overall resistance and resilience of the microbial community.
doi:10.1038/ismej.2010.91
PMCID: PMC3105671  PMID: 20596071
saltmarsh; desiccation; microbial community; stress; biofilm; microphytobenthos
4.  Diversity of Bacillus-like organisms isolated from deep-sea hypersaline anoxic sediments 
Saline Systems  2008;4:8.
Background
The deep-sea, hypersaline anoxic brine lakes in the Mediterranean are among the most extreme environments on earth, and in one of them, the MgCl2-rich Discovery basin, the presence of active microbes is equivocal. However, thriving microbial communities have been detected especially in the chemocline between deep seawater and three NaCl-rich brine lakes, l'Atalante, Bannock and Urania. By contrast, the microbiota of these brine-lake sediments remains largely unexplored.
Results
Eighty nine isolates were obtained from the sediments of four deep-sea, hypersaline anoxic brine lakes in the Eastern Mediterranean Sea: l'Atalante, Bannock, Discovery and Urania basins. This culture collection was dominated by representatives of the genus Bacillus and close relatives (90% of all isolates) that were investigated further. Physiological characterization of representative strains revealed large versatility with respect to enzyme activities or substrate utilization. Two third of the isolates did not grow at in-situ salinities and were presumably present as endospores. This is supported by high numbers of endospores in Bannock, Discovery and Urania basins ranging from 3.8 × 105 to 1.2 × 106 g-1 dw sediment. However, the remaining isolates were highly halotolerant growing at salinities of up to 30% NaCl. Some of the novel isolates affiliating with the genus Pontibacillus grew well under anoxic conditions in sulfidic medium by fermentation or anaerobic respiration using dimethylsulfoxide or trimethylamine N-oxide as electron acceptor.
Conclusion
Some of the halophilic, facultatively anaerobic relatives of Bacillus appear well adapted to life in this hostile environment and suggest the presence of actively growing microbial communities in the NaCl-rich, deep-sea brine-lake sediments.
doi:10.1186/1746-1448-4-8
PMCID: PMC2464584  PMID: 18541011

Results 1-4 (4)