PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("Chung, J took")
1.  New Functions of Arthropod Bursicon: Inducing Deposition and Thickening of New Cuticle and Hemocyte Granulation in the Blue Crab, Callinectes sapidus 
PLoS ONE  2012;7(9):e46299.
Arthropod growth requires molt-associated changes in softness and stiffness of the cuticle that protects from desiccation, infection and injury. Cuticle hardening in insects depends on the blood-borne hormone, bursicon (Burs), although it has never been determined in hemolymph. Whilst also having Burs, decapod crustaceans reiterate molting many more times during their longer life span and are encased in a calcified exoskeleton, which after molting undergoes similar initial cuticle hardening processes as in insects. We investigated the role of homologous crustacean Burs in cuticular changes and growth in the blue crab, Callinectes sapidus. We found dramatic increases in size and number of Burs cells during development in paired thoracic ganglion complex (TGC) neurons with pericardial organs (POs) as neurohemal release sites. A skewed expression of Burs β/Burs α mRNA in TGC corresponds to protein contents of identified Burs β homodimer and Burs heterodimer in POs. In hemolymph, Burs is consistently present at ∼21 pM throughout the molt cycle, showing a peak of ∼89 pM at ecdysis. Since initial cuticle hardness determines the degree of molt-associated somatic increment (MSI), we applied recombinant Burs in vitro to cuticle explants of late premolt or early ecdysis. Burs stimulates cuticle thickening and granulation of hemocytes. These findings demonstrate novel cuticle-associated functions of Burs during molting, while the unambiguous and constant presence of Burs in cells and hemolymph throughout the molt cycle and life stages may implicate further functions of its homo- and heterodimer hormone isoforms in immunoprotective defense systems of arthropods.
doi:10.1371/journal.pone.0046299
PMCID: PMC3460823  PMID: 23029467
2.  Cloning of aquaporin-1 of the blue crab, Callinectes sapidus: its expression during the larval development in hyposalinity 
Aquatic Biosystems  2012;8:21.
Background
Ontogenetic variation in salinity adaptation has been noted for the blue crab, Callinectes sapidus, which uses the export strategy for larval development: females migrate from the estuaries to the coast to spawn, larvae develop in the ocean, and postlarvae (megalopae) colonize estuarine areas. We hypothesized that C. sapidus larvae may be stenohaline and have limited osmoregulatory capacity which compromises their ability to survive in lower salinity waters. We tested this hypothesis using hatchery-raised larvae that were traceable to specific life stages. In addition, we aimed to understand the possible involvement of AQP-1 in salinity adaptation during larval development and during exposure to hyposalinity.
Results
A full-length cDNA sequence of aquaporin (GenBank JQ970426) was isolated from the hypodermis of the blue crab, C. sapidus, using PCR with degenerate primers and 5′ and 3′ RACE. The open reading frame of CasAQP-1 consists of 238 amino acids containing six helical structures and two NPA motifs for the water pore. The expression pattern of CasAQP-1 was ubiquitous in cDNAs from all tissues examined, although higher in the hepatopancreas, thoracic ganglia, abdominal muscle, and hypodermis and lower in the antennal gland, heart, hemocytes, ovary, eyestalk, brain, hindgut, Y-organs, and gill. Callinectes larvae differed in their capacity to molt in hyposalinity, as those at earlier stages from Zoea (Z) 1 to Z4 had lower molting rates than those from Z5 onwards, as compared to controls kept in 30 ppt water. No difference was found in the survival of larvae held at 15 and 30 ppt. CasAQP-1 expression differed with ontogeny during larval development, with significantly higher expression at Z1-2, compared to other larval stages. The exposure to 15 ppt affected larval-stage dependent CasAQP-1 expression which was significantly higher in Z2- 6 stages than the other larval stages.
Conclusions
We report the ontogenetic variation in CasAQP-1 expression during the larval development of C. sapidus and the induction of its expression at early larval stages in the exposure of hyposalinity. However, it remains to be determined if the increase in CasAQP-1 expression at later larval stages may have a role in adaptation to hyposalinity.
doi:10.1186/2046-9063-8-21
PMCID: PMC3489796  PMID: 22943628
Aquaporin; Blue crab larvae; Ontogenetic variation; Osmoregulation; Salinity tolerance
3.  Molecular characterization and mRNA expression of two key enzymes of hypoxia-sensing pathways in eastern oysters Crassostrea virginica (Gmelin): Hypoxia-inducible factor α (HIF-α) and HIF-prolyl hydroxylase (PHD) 
Oxygen homeostasis is crucial for development, survival and normal function of all metazoans. A family of transcription factors called hypoxia-inducible factors (HIF) is critical in mediating the adaptive responses to reduced oxygen availability. The HIF transcription factor consists of a constitutively expressed β subunit and an oxygen-dependent α subunit; the abundance of the latter determines the activity of HIF and is regulated by a family of O2- and Fe2+-dependent enzymes prolyl hydroxylases (PHDs). Currently very little is known about the function of this important pathway and the molecular structure of its key players in hypoxia-tolerant intertidal mollusks including oysters, which are among the animal champions of anoxic and hypoxic tolerance and thus can serve as excellent models to study the role of HIF cascade in adaptations to oxygen deficiency. We have isolated transcripts of two key components of the oxygen sensing pathway - the oxygen-regulated HIF-α subunit and PHD - from an intertidal mollusk, the eastern oyster Crassostrea virginica, and determined the transcriptional responses of these two genes to anoxia, hypoxia and cadmium (Cd) stress. HIF-α and PHD homologs from eastern oysters C. virginica show significant sequence similarity and share key functional domains with the earlier described isoforms from vertebrates and invertebrates. Phylogenetic analysis shows that genetic diversification of HIF and PHD isoforms occurred within the vertebrate lineage indicating functional diversification and specialization of the oxygen-sensing pathways in this group, which parallels situation observed for many other important genes. HIF-α and PHD homologs are broadly expressed at the mRNA level in different oyster tissues and show transcriptional responses to prolonged hypoxia in the gills consistent with their putative role in oxygen sensing and the adaptive response to hypoxia. Similarity in amino acid sequence, domain structure and transcriptional responses between HIF-α and PHD homologs from oysters and other invertebrate and vertebrate species implies the highly conserved functions of these genes throughout the evolutionary history of animals, in accordance with their critical role in oxygen sensing and homeostasis.
doi:10.1016/j.cbd.2010.10.003
PMCID: PMC3102143  PMID: 21106446
Oxygen sensing; hypoxia-inducible factor; evolution; expression; intertidal mollusk
4.  Molt-inhibiting hormone stimulates vitellogenesis at advanced ovarian developmental stages in the female blue crab, Callinectes sapidus 1: an ovarian stage dependent involvement 
Saline Systems  2009;5:7.
To understand the hormonal coordination of the antagonism between molting and reproduction in crustaceans, the terminally anecdysial mature female Callinectes sapidus was used as a model. The regulatory roles of crustacean hyperglycemic hormone (CHH) and molt-inhibiting hormone (MIH) in vitellogenesis were examined. A competitive specific RIA was used to measure the levels of MIH and CHH in the hemolymphs of mature females at pre- and mid- vitellogenic stages, and their effects on vitellogenesis at early (early 2, E2) and mid vitellogenesis (3) stages were determined in vitro. A hepatopancreas fragments incubation system was developed and the levels of vitellogenin (VtG), as well as VtG mRNA and heterogeneous nuclear (hn)VtG RNA were determined using RIA or QPCR, respectively. MIH titers were four times higher at mid-vitellogenesis than at pre-vitellogenesis, while CHH levels in the hemolymph were constant. In the in vitro incubation experiments, MIH increased both VtG mRNA levels and secretion at ovarian stage 3. At stage E2, however, MIH resulted in a mixed response: downregulation of VtG mRNA and upregulation of hnVtG RNA. CHH had no effect on any of the parameters. Actinomycin D blocked the stimulatory effects of MIH in stage 3 animals on VtG mRNA and VtG, while cycloheximide attenuated only VtG levels, confirming the MIH stimulatory effect at this stage. MIH is a key endocrine regulator in the coordination of molting and reproduction in the mature female C. sapidus, which simultaneously inhibits molt and stimulates vitellogenesis.
doi:10.1186/1746-1448-5-7
PMCID: PMC2715418  PMID: 19583852
5.  Molt-inhibiting hormone stimulates vitellogenesis at advanced ovarian developmental stages in the female blue crab, Callinectes sapidus 2: novel specific binding sites in hepatopancreas and cAMP as a second messenger 
Saline Systems  2009;5:6.
The finding that molt-inhibiting hormone (MIH) regulates vitellogenesis in the hepatopancreas of mature Callinectes sapidus females, raised the need for the characterization of its mode of action. Using classical radioligand binding assays, we located specific, saturable, and non-cooperative binding sites for MIH in the Y-organs of juveniles (J-YO) and in the hepatopancreas of vitellogenic adult females. MIH binding to the hepatopancreas membranes had an affinity 77 times lower than that of juvenile YO membranes (KD values: 3.22 × 10-8 and 4.19 × 10-10 M/mg protein, respectively). The number of maximum binding sites (BMAX) was approximately two times higher in the hepatopancreas than in the YO (BMAX values: 9.24 × 10-9 and 4.8 × 10-9 M/mg protein, respectively). Furthermore, MIH binding site number in the hepatopancreas was dependent on ovarian stage and was twice as high at stage 3 than at stages 2 and 1. SDS-PAGE separation of [125I] MIH or [125I] crustacean hyperglycemic hormone (CHH) crosslinked to the specific binding sites in the membranes of the J-YO and hepatopancreas suggests a molecular weight of ~51 kDa for a MIH receptor in both tissues and a molecular weight of ~61 kDa for a CHH receptor in the hepatopancreas. The use of an in vitro incubation of hepatopancreas fragments suggests that MIH probably utilizes cAMP as a second messenger in this tissue, as cAMP levels increased in response to MIH. Additionally, 8-Bromo-cAMP mimicked the effects of MIH on vitellogenin (VtG) mRNA and heterogeneous nuclear (hn) VtG RNA levels. The results imply that the functions of MIH in the regulation of molt and vitellogenesis are mediated through tissue specific receptors with different kinetics and signal transduction. MIH ability to regulate vitellogenesis is associated with the appearance of MIH specific membrane binding sites in the hepatopancreas upon pubertal/final molt.
doi:10.1186/1746-1448-5-6
PMCID: PMC2714851  PMID: 19583849
6.  A trehalose 6-phosphate synthase gene of the hemocytes of the blue crab, Callinectes sapidus: cloning, the expression, its enzyme activity and relationship to hemolymph trehalose levels 
Saline Systems  2008;4:18.
Trehalose in ectoderms functions in energy metabolism and protection in extreme environmental conditions. We structurally characterized trehalose 6-phosphate synthase (TPS) from hemocytes of the blue crab, Callinectes sapidus. C. sapidus Hemo TPS (CasHemoTPS), like insect TPS, encodes both TPS and trehalose phosphate phosphatase domains. Trehalose seems to be a major sugar, as it shows higher levels than does glucose in hemocytes and hemolymph. Increases in HemoTPS expression, TPS enzyme activity in hemocytes, and hemolymph trehalose levels were determined 24 h after lipopolysaccharide challenge, suggesting that both TPS and TPP domains of CasHemoTPS are active and functional. The TPS gene has a wide tissue distribution in C. sapidus, suggesting multiple biosynthetic sites. A correlation between TPS activity in hemocytes and hemolymph trehalose levels was found during the molt cycle. The current study provides the first evidence of presence of trehalose in hemocytes and TPS in tissues of C. sapidus and implicates its functional role in energy metabolism and physiological adaptation.
doi:10.1186/1746-1448-4-18
PMCID: PMC2615023  PMID: 19077285

Results 1-6 (6)