Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Harmful metals concentration in sediments and fishes of biologically important estuary, Bay of Bengal 
Study on the accumulation level of heavy metals was conducted on sediment and fishes from estuaries of Bay of Bengal. Heavy metals were determined by using Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) and the results were compared to permissible limits of WHO/USEPA. The accumulation patterns of Fe and Cd were found predominantly in all samples tested when correlated with other metals. It was found that the concentration of metals such as Cd (3.90 ± 0.25 μg/g), Cr (0.44 ± 0.05 μg/g), Ni (0.33 ± 0.01 μg/g), and Mn (1.1 ± 0.11 μg/g) were exceeding the permissible limit, whereas Fe, Co, Pb, and Zn were found within the limit of WHO/USEPA at station 1. In station 2, Cd (16.5 ± 0.4 μg/g), Mn (0.67 ± 0.11 μg/g), and Cr (0.80 ± 0.01 μg/g) were exceeding the permissible limit, whereas Fe, Co, Pb, Ni, and Zn were found within the limit. This study emphasizes that Cd and Mn levels in both stations, are far higher than the acceptable values set by WHO/USEPA and may therefore present human health hazards. It is therefore mandatory to carry out extensive research to evaluate the possible environmental risk factors in the vicinity of both estuaries with respect to heavy metals.
PMCID: PMC3880047  PMID: 24355110
Environment; Estuary; Fishes; Health; Metal; Accumulation
2.  Mangrove plant, Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens 
Aquatic Biosystems  2012;8:11.
Biosynthesis of nanoparticles has received increasing attention due to the growing need to develop safe, time-effective and environmentally friendly technologies for nano-materials synthesis. This paper reports the one pot green synthesis of silver nanoparticles (AgNPs) using the leaf bud extract of a mangrove plant, Rhizophora mucronata and their antimicrobial effects against aquatic pathogens. Highly stable AgNPs were synthesized by treating the mangrove leaf bud extract with aqueous silver nitrate solution at 15 psi pressure and 121°C for 5 minutes.
The biosynthesized AgNPs were characterized by UV-visible spectrum, at 426 nm. The X-Ray Diffraction (XRD) pattern revealed the face-centered cubic geometry of AgNPs. Fourier Transform Infra Red (FTIR) spectroscopic analysis was carried out to identify the possible biomolecules responsible for biosynthesis of AgNPs from the leaf bud extract. The size and shape of the well-dispersed AgNPs were documented with the help of High Resolution Transmission Electron Microscopy (HRTEM) with a diameter ranged from 4 to 26 nm. However a maximum number of particles were observed at 4 nm in size. The antibacterial effects of AgNPs were studied against aquatic pathogens Proteus spp., Pseudomonas fluorescens and Flavobacterium spp., isolated from infected marine ornamental fish, Dascyllus trimaculatus.
This study reveals that the biosynthesized AgNPs using the leaf bud extract of a mangrove plant (R. mucronata) were found equally potent to synthetic antibiotics. The size of the inhibition zone increases when the concentration of the AgNPs increased and varies according to species.
PMCID: PMC3411493  PMID: 22608057
Silver nanoparticles; Rhizophora mucronata; One pot green synthesis; Antimicrobial; Aquatic pathogens

Results 1-2 (2)