Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Altitude affects the reproductive performance in monoicous and dioicous bryophytes: examples from a Brazilian Atlantic rainforest 
AoB Plants  2012;2012:pls016.
Species traits, such as breeding system, phylum and growth form and habitat characteristics are shown to influence reproductive performance of liverworts and mosses in the Brazilian Atlantic Rainforest, and drive life-history differentiation among species and populations.
Background and aims
Short life cycles and trade-offs linked to breeding systems make bryophytes good models for the study of plant reproductive strategies. Our aim was to test if differences in sexual reproductive performance of bryophytes in tropical rainforests are driven by the breeding system of the species (monoicous or dioicous) or are mainly affected by the habitat.
The reproductive performance (sexual branches, gametangia (sex organs), fertilization and sporophyte production) of 11 species was repeatedly monitored and analysed from populations at sea-level and montane sites of a Brazilian Atlantic rainforest over 15 months.
Principal results
Monoicous species had the highest reproductive performance, particularly for sexual branches, fertilized gametangia and sporophyte production. Species at the sea-level site produced more sexual branches and had more female-biased sex ratios of gametangia than species in the montane site. Fertilizations were more frequent at the montane site, but sporophyte frequency was similar between the two sites. Fertilization tended to occur mostly in the periods of heavy rain (October to December).
Breeding system is not the only major influence on the reproductive performance of bryophytes. We show that habitat is also an important factor determining life-history differentiation. Female-biased sex ratios and low rates of fertilization are seen to be compensated for by high production of reproductive structures at the initial phases of the reproductive cycle.
PMCID: PMC3401027  PMID: 22822422
2.  Positive Edge Effects on Forest-Interior Cryptogams in Clear-Cuts 
PLoS ONE  2011;6(11):e27936.
Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects) is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting) forest-interior cryptogams (lichens, bryophytes, and fungi) associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0–50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests) and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase habitat quality in matrix habitats bordering focal habitats should increase the probability of long-term persistence of habitat specialists.
PMCID: PMC3219701  PMID: 22114728

Results 1-2 (2)