PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Hybridization of common reed in North America? The answer is blowing in the wind 
AoB Plants  2012;2012:pls022.
Hybridization of Phragmites has occurred in the Gulf Coast and likely is occurring elsewhere in North America. However, detection failure may be due to limited genetic tools. Additionally, nomenclature confusion necessitates a revision of the current classification system.
Background and aims
We review evidence for hybridization of Phragmites australis in North America and the implications for the persistence of native P. australis ssp. americanus populations in North America. We also highlight the need for an updated classification system, which takes P. australis intraspecific variation and hybridization into account.
Methodology
We reviewed available published, in press and in preparation literature to assess the likelihood of hybridization and interbreeding in genotypes of P. australis present in North America.
Principal results
Experimental results demonstrate that hybridization among introduced and native haplotypes is possible within the genus Phragmites, yet evidence that hybridization has occurred naturally is only starting to emerge. The lag in identifying hybridization in Phragmites in North America may be related to under-sampling in some parts of North America and to a lack of molecular tools that provide the capability to recognize hybrids.
Conclusions
Our understanding of the gene flow within and between species in the genus Phragmites is moving at a fast pace, especially on the east and Gulf coasts of North America. More attention should also be focused on the Great Lakes region, the southwestern and the west coast of the USA, where sympatry has created opportunities for hybridization. Where hybridizations have been detected, there are currently no published data on how hybridization affects plant vigour, morphology, invasiveness or conservation of the genetic integrity of the North American native subspecies. We conclude that the detection of more hybridization is highly likely and that there is a need to develop new markers for the different Phragmites species and lineages to fill current knowledge gaps. Finally, we suggest that the classification system for P. australis should be updated and published to help clarify the nomenclature.
doi:10.1093/aobpla/pls022
PMCID: PMC3444738  PMID: 22993684
2.  Highly Sensitive Multiplex Assay for Detection of Human Immunodeficiency Virus Type 1 and Hepatitis C Virus RNA 
Journal of Clinical Microbiology  2002;40(7):2408-2419.
Various nucleic acid assays have been developed and implemented for diagnostics and therapeutic monitoring of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infections. The high-throughput, semiautomated assays described here were developed to provide a method suitable for screening plasma specimens for the presence of HIV-1 and HCV RNAs. Three assays were developed: a multiplex HIV-1/HCV assay for simultaneous detection of HIV-1 and HCV, and discriminatory assays for specific detection of HIV-1 and HCV. The assay systems utilize three proprietary technologies: (i) target capture-based sample preparation, (ii) transcription-mediated amplification (TMA), and (iii) hybridization protection assay (HPA). An internal control is incorporated into each reaction to control for every step of the assay and identify random false-negative reactions. The assays demonstrated a sensitivity of at least 100 copies/ml for each target, and they detected with similar sensitivity all major variants of HCV and HIV-1, including HIV-1 group O strains. Assay sensitivity for one virus was not affected by the presence of the other. The specificity of these TMA-driven assays was ≥99.5% in both normal donor specimens and plasma containing potentially interfering substances or other blood-borne pathogens. Statistical receiver operating characteristic plots of 1 − specificity versus sensitivity data determined very wide analyte cutoff values for each assay at the point at which the assay specificity and sensitivity were both ≥99.5%. The sensitivity, specificity, and throughput capability predict that these assays will be valuable for large-volume plasma screening, either in a blood bank setting or in other diagnostic applications.
doi:10.1128/JCM.40.7.2408-2419.2002
PMCID: PMC120571  PMID: 12089255

Results 1-2 (2)