Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Preadaptation and post-introduction evolution facilitate the invasion of Phragmites australis in North America 
Ecology and Evolution  2014;4(24):4567-4577.
Compared with non-invasive species, invasive plant species may benefit from certain advantageous traits, for example, higher photosynthesis capacity and resource/energy-use efficiency. These traits can be preadapted prior to introduction, but can also be acquired through evolution following introduction to the new range. Disentangling the origins of these advantageous traits is a fundamental and emerging question in invasion ecology. We conducted a multiple comparative experiment under identical environmental condition with the invasive haplotype M lineage of the wetland grass Phragmites australis and compared the ecophysiological traits of this invasive haplotype M in North America with those of the European ancestor and the conspecific North American native haplotype E lineage, P. australis ssp. americanus. The invasive haplotype M differed significantly from the native North American conspecific haplotype E in several ecophysiological and morphological traits, and the European haplotype M had a more efficient photosynthetic apparatus than the native North American P. australis ssp. americanus. Within the haplotype M lineage, the introduced North American P. australis exhibited different biomass allocation patterns and resource/energy-use strategies compared to its European ancestor group. A discriminant analysis of principal components separated the haplotype M and the haplotype E lineages completely along the first canonical axis, highly related to photosynthetic gas-exchange parameters, photosynthetic energy-use efficiency and payback time. The second canonical axis, highly related to photosynthetic nitrogen use efficiency and construction costs, significantly separated the introduced P. australis in North America from its European ancestor. Synthesis. We conclude that the European P. australis lineage was preadapted to be invasive prior to its introduction, and that the invasion in North America is further stimulated by rapid post-introduction evolution in several advantageous traits. The multicomparison approach used in this study could be an effective approach for distinguishing preadaptation and post-introduction evolution of invasive species. Further research is needed to link the observed changes in invasive traits to the genetic variation and the interaction with the environment.
PMCID: PMC4278810  PMID: 25558352
Biomass allocation; common reed; common-environment experiment; discriminant analysis; ecophysiological trade-off; functional traits; invasion ecology; leaf construction cost; photosynthesis; standardized major axis (SMA)
2.  Expression of major photosynthetic and salt-resistance genes in invasive reed lineages grown under elevated CO2 and temperature 
Ecology and Evolution  2014;4(21):4161-4172.
It is important to investigate the molecular causes of the variation in ecologically important traits to fully understand phenotypic responses to climate change. In the Mississippi River Delta, two distinct, sympatric invasive lineages of common reed (Phragmites australis) are known to differ in several ecophysiological characteristics and are expected to become more salt resistant due to increasing atmospheric CO2 and temperature. We investigated whether different patterns of gene expression can explain their ecophysiological differences and increased vigor under future climatic conditions. We compared the transcript abundance of photosynthetic genes of the Calvin cycle (Rubisco small subunit, RbcS; Phosphoglycerate kinase, PGK; Phosphoribulokinase, PRK), genes related with salt transport (Na+/H+ antiporter, PhaNHA) and oxidative stress response genes (Manganese Superoxide dismutase, MnSOD; Glutathione peroxidase, GPX), and the total aboveground biomass production between two genotypes representing the two lineages. The two genotypes (Delta-type, Mediterranean lineage, and EU-type, Eurasian lineage) were grown under an ambient and a future climate scenario with simultaneously elevated CO2 and temperature, and under two different soil salinities (0‰ or 20‰). We found neither differences in the aboveground biomass production nor the transcript abundances of the two genotypes, but soil salinity significantly affected all the investigated parameters, often interacting with the climatic conditions. At 20‰ salinity, most genes were higher expressed in the future than in the ambient climatic conditions. Higher transcription of the genes suggests higher abundance of the protein they code for, and consequently increased photosynthate production, improved stress responses, and salt exclusion. Therefore, the higher expression of these genes most likely contributed to the significantly ameliorated salinity impact on the aboveground biomass production of both P. australis genotypes under elevated temperature and CO2. Although transcript abundances did not explain differences between the lineages, they correlated with the increased vigor of both lineages under anticipated future climatic conditions.
PMCID: PMC4242567  PMID: 25505541
Common reed; Delta-type; EU-type; Mississippi River Delta; Phragmites australis; US Gulf Coast
3.  Interactive effects of elevated temperature and CO2 on two phylogeographically distinct clones of common reed (Phragmites australis) 
AoB Plants  2013;5:pls051.
One European and one Mediterranean Phragmites australis genotype (DK clone and ALG clone, respectively) showed distinct aboveground growth and physiology in response to different treatment combinations of elevated CO2 and temperature according to their genetic background. The DK clone was the most responsive clone.
The aboveground growth, physiological and biochemical parameters of two clones of the cosmopolitan wetland grass Phragmites australis, grown at four treatment combinations of temperature and CO2, were investigated to elucidate whether their climate response differed due to inherent differences in their ecological adaptation. The two phylogeographically distinct P. australis clones (DK clone, European genetic background; ALG clone, Mediterranean genetic background) were grown for 151 days in phytotrons at 19/12 °C (day/night temperature) and 390 ppm CO2, and at elevated temperature (+5 °C) and CO2 (700 ppm) with treatment factors alone or in combination. The ALG clone had 2–4 times higher aboveground biomass, higher light-saturated rates of photosynthesis (Pmax), maximum electron transport rates (ETRmax) and Rubisco activity, and higher photosynthetic nitrogen-use efficiency than the DK clone. The DK clone, however, produced more shoots, leaves and side-shoots, and had 9–51 % higher specific leaf area and 15–39 % higher leaf nitrogen concentration than the ALG clone. Although elevated atmospheric CO2 alone barely affected the aboveground growth of the two P. australis clones, simultaneously elevated temperature and CO2 stimulated growth and aboveground biomass. Overall, elevated CO2 stimulated photosynthesis, but the clones responded differently to a concomitant increase in CO2 and temperature, depending on the phylogeographic background of the plant. The DK clone showed overall stronger responses, and can be considered the more plastic of the two clones with respect to CO2 and temperature. Thus, the DK clone may be better adapted to climate change than the ALG clone, at least in the short term.
PMCID: PMC4104621
Algeria; climate change; Denmark; Mediterranean Phragmites; RERAF phytotron; temperate Phragmites
4.  Photosynthesis of co-existing Phragmites haplotypes in their non-native range: are characteristics determined by adaptations derived from their native origin? 
AoB Plants  2013;5:plt016.
Several Phragmites lineages differing in origin and phenotype co-exist in the Gulf Coast of North America. We collected rhizomes of four lineages and propagated them in a common environment to compare photosynthetic characteristics. We observed substantial differences among and within lineages. As the lineages originating in Africa and in the Mediterranean region had higher photosynthetic capacity than the lineages originating in Eurasia, and showed typical ecophysiological traits of plants adapted to warm and arid climates, we concluded that the differences observed are due to adaptations acquired in the native ranges. The four lineages can therefore be regarded as ecotypes.
The Gulf Coast of North America (GC) is a ‘hot spot’ of Phragmites diversity as several lineages (defined according to the haplotypes of their chloroplast DNA) differing in origin, genetic traits and phenotype co-exist and interbreed in this area. We analysed differences in photosynthetic characteristics among and within four haplotypes to understand if differences in gas exchange can be attributed to adaptations acquired in their native ranges. We collected rhizomes of four GC haplotypes (I2, M1, M and AI; including the phenotypes ‘Land-type’, ‘Delta-type’, ‘EU-type’ and ‘Greeny-type’) and propagated them in a common controlled environment to compare photosynthesis–irradiance responses, CO2 responses, chlorophyll fluorescence, the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), specific leaf area (SLA), pigment contents, stomatal density and guard cell length. The maximum light-saturated photosynthetic rate, Amax, in the haplotype I2 (Land-type) and haplotype M1 (Delta-type) (34.3–36.1 µmol CO2 m−2 s−1) was higher than that in the invasive Eurasian haplotype M (22.4 ± 2.3 µmol CO2 m−2 s−1). The Amax of haplotype AI (Greeny3-type) was 29.1 ± 4.0 µmol CO2 m−2 s−1 and did not differ from the Amax of the other haplotypes. The carboxylation rate (Vcmax) and electron transport rate (Jmax) followed the same pattern as Amax. The haplotypes also differed in SLA (17.0–24.3 m2 kg−1 dry mass) and pigment content, whereas stomatal density and guard cell length, Rubisco activity and chlorophyll fluorescence did not differ significantly among haplotypes. The high photosynthetic activity and gas-exchange capacity of the two haplotypes originating in tropical Africa and the Mediterranean area (haplotypes I2 and M1) are apparently adaptations derived from their native ranges. Hence, the haplotypes can be regarded as ecotypes. However, it remains unclear how these differences relate to plant competitiveness and fitness in the GC of North America environment.
PMCID: PMC4104645
Adaptations; Gulf Coast of North America; genotypes; haplotypes; invasion; photosynthesis; Phragmites
5.  Phenotypic traits of Phragmites australis clones are not related to ploidy level and distribution range 
AoB Plants  2012;2012:pls017.
The present study reveals significant genetically determined differences in a range of growth and ecophysiological traits between different Phragmites australis genotypes, and provides evidence that the differences are neither related to ploidy level per se nor to the phylogeographic relationships of the genotypes.
Background and aims
Phragmites australis is a wetland grass with high genetic variability, augmented by its cosmopolitan distribution, clonal growth form and large variation in chromosome numbers. Different ploidy levels and ecotypes differ in morphology and ecophysiological traits, and may possess different levels of phenotypic variation. The aim of this study was to quantify the natural variation in ecophysiological characteristics of P. australis, and to explore whether differences in ecophysiological traits can be related to ploidy levels or to the geographic origin of the clones.
Fifteen clones of P. australis from Europe and Asia/Australia, representing five ploidy levels (4x, 6x, 8x, 10x and 12x), were grown in a common garden design for 119 days. Plant growth and light-saturated rate of photosynthesis (Pmax), stomatal conductance (gs), water use efficiency (WUE) and concentrations of photosynthetic pigments and mineral ions in the leaves were measured.
Principal results
The growth of the plants and most ecophysiological parameters differed significantly between clones. The mean maximum shoot height varied from 0.9 to 1.86 m, Pmax from 9.7 to 27 µmol m−2 s−1, gs from 0.22 to 1.41 mol m−2 s−1 and WUE from 13 to 47 µmol mol−1. The concentrations of chlorophylls did not vary significantly between clones, but the chlorophyll a/b ratio and the concentrations of total carotenoids did. The observed differences were not explained either by the ploidy level per se or by the geographic origin or phylogenetic relationships of the clones.
Phylogeographic relationships in P. australis on a global scale do not mirror the environment where the adaptations have evolved, and high phenotypic variation among and within clones complicates comparative studies. Future studies aimed at explaining differences in plant behaviour between P. australis populations should be careful in the selection of target genotypes and/or populations, and should avoid generalizing their findings beyond the genotypes and/or populations studied.
PMCID: PMC3407373  PMID: 22848787
6.  Exploring the borders of European Phragmites within a cosmopolitan genus 
AoB Plants  2012;2012:pls020.
European Phragmites australis is one of four main cp-DNA haplotype clusters present worldwide. The European gene pool extends from North America to Far East Asia and South Africa. Extensive gene flow occurs only within the temperate region of Europe.
Background and aims
Two Phragmites australis taxa are recognized in Europe: P. australis ssp. altissimus, also known as Phragmites isiaca, in the Mediterranean region and P. australis in the temperate region. Another taxonomic group in the Mediterranean is Phragmites frutescens. European genotypes are diverse genetically, cytologically and morphologically, and are related to African, Asiatic and American genotypes. We investigated chloroplast DNA (cpDNA) diversity in Europe and defined the current borders of the European gene pool.
We analysed chloroplast variation with parsimony and genetic distance methods, and compared it with that of nuclear amplified fragment length polymorphism and microsatellites. We also investigated the phenological pattern of 188 genotypes collected worldwide in a common garden in Denmark. We assumed that non-flowering genotypes could indicate climatic, geographic and/or reproductive barriers to dispersal and would have been recorded in the genetic pattern as groups genetically isolated from, or within, the European pool.
Principal results
The European P. australis gene pool extends from North America to the Far East and South Africa. However, African and North American genotypes are differentiating from the European genotypes. Mediterranean P. australis is genetically different from temperate P. australis and shares several similarities with Phragmites mauritianus in Africa and Phragmites karka in Asia. Phragmites frutescens shares the cpDNA sequences with both these tropical species. Two DNA bands can distinguish Mediterranean P. australis from P. frutescens and P. mauritianus and from temperate P. australis, and reveal possible hybrids among these species in the Mediterranean region. Phenological data confirmed possible gene flow within the temperate region of Europe, whereas the Mediterranean genotypes did not set inflorescences in Denmark, suggesting reproductive barriers between temperate and Mediterranean P. australis.
European P. australis appears as one of four main Phragmites groups known in the world. Further research is needed to understand the implications of long-distance dispersal at the population level.
PMCID: PMC3435523  PMID: 22962631
7.  Invasion strategies in clonal aquatic plants: are phenotypic differences caused by phenotypic plasticity or local adaptation? 
Annals of Botany  2010;106(5):813-822.
Background and Aims
The successful spread of invasive plants in new environments is often linked to multiple introductions and a diverse gene pool that facilitates local adaptation to variable environmental conditions. For clonal plants, however, phenotypic plasticity may be equally important. Here the primary adaptive strategy in three non-native, clonally reproducing macrophytes (Egeria densa, Elodea canadensis and Lagarosiphon major) in New Zealand freshwaters were examined and an attempt was made to link observed differences in plant morphology to local variation in habitat conditions.
Field populations with a large phenotypic variety were sampled in a range of lakes and streams with different chemical and physical properties. The phenotypic plasticity of the species before and after cultivation was studied in a common garden growth experiment, and the genetic diversity of these same populations was also quantified.
Key Results
For all three species, greater variation in plant characteristics was found before they were grown in standardized conditions. Moreover, field populations displayed remarkably little genetic variation and there was little interaction between habitat conditions and plant morphological characteristics.
The results indicate that at the current stage of spread into New Zealand, the primary adaptive strategy of these three invasive macrophytes is phenotypic plasticity. However, while limited, the possibility that genetic diversity between populations may facilitate ecotypic differentiation in the future cannot be excluded. These results thus indicate that invasive clonal aquatic plants adapt to new introduced areas by phenotypic plasticity. Inorganic carbon, nitrogen and phosphorous were important in controlling plant size of E. canadensis and L. major, but no other relationships between plant characteristics and habitat conditions were apparent. This implies that within-species differences in plant size can be explained by local nutrient conditions. All together this strongly suggests that invasive clonal aquatic plants adapt to a wide range of habitats in introduced areas by phenotypic plasticity rather than local adaptation.
PMCID: PMC2958791  PMID: 20826438
Alien weeds; biological invasion; clonal plants; Egeria densa; Elodea canadensis; establishment; genetic diversity; Lagarosiphon major; local adaptation; macrophytes; morphometric characters; phenotypic plasticity
8.  Genetic diversity in three invasive clonal aquatic species in New Zealand 
BMC Genetics  2010;11:52.
Elodea canadensis, Egeria densa and Lagarosiphon major are dioecious clonal species which are invasive in New Zealand and other regions. Unlike many other invasive species, the genetic variation in New Zealand is very limited. Clonal reproduction is often considered an evolutionary dead end, even though a certain amount of genetic divergence may arise due to somatic mutations. The successful growth and establishment of invasive clonal species may be explained not by adaptability but by pre-existing ecological traits that prove advantageous in the new environment. We studied the genetic diversity and population structure in the North Island of New Zealand using AFLPs and related the findings to the number of introductions and the evolution that has occurred in the introduced area.
Low levels of genetic diversity were found in all three species and appeared to be due to highly homogeneous founding gene pools. Elodea canadensis was introduced in 1868, and its populations showed more genetic structure than those of the more recently introduced of E. densa (1946) and L. major (1950). Elodea canadensis and L. major, however, had similar phylogeographic patterns, in spite of the difference in time since introduction.
The presence of a certain level of geographically correlated genetic structure in the absence of sexual reproduction, and in spite of random human dispersal of vegetative propagules, can be reasonably attributed to post-dispersal somatic mutations. Direct evidence of such evolutionary events is, however, still insufficient.
PMCID: PMC2902404  PMID: 20565861

Results 1-8 (8)