Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Current methods for detecting ethylene in plants 
Annals of Botany  2012;111(3):347-360.
In view of ethylene's critical developmental and physiological roles the gaseous hormone remains an active research topic for plant biologists. Progress has been made to understand the ethylene biosynthesis pathway and the mechanisms of perception and action. Still numerous questions need to be answered and findings to be validated. Monitoring gas production will very often complete the picture of any ethylene research topic. Therefore the search for suitable ethylene measuring methods for various plant samples either in the field, greenhouses, laboratories or storage facilities is strongly motivated.
This review presents an update of the current methods for ethylene monitoring in plants. It focuses on the three most-used methods – gas chromatography detection, electrochemical sensing and optical detection – and compares them in terms of sensitivity, selectivity, time response and price. Guidelines are provided for proper selection and application of the described sensor methodologies and some specific applications are illustrated of laser-based detector for monitoring ethylene given off by Arabidopsis thaliana upon various nutritional treatments.
Each method has its advantages and limitations. The choice for the suitable ethylene sensor needs careful consideration and is driven by the requirements for a specific application.
PMCID: PMC3579434  PMID: 23243188
Ethylene; Arabidopsis thaliana; gas sampling; gas chromatography; electrochemical sensing; laser-based detector
2.  Tobacco LSU-like protein couples sulphur-deficiency response with ethylene signalling pathway 
Journal of Experimental Botany  2013;64(16):5173-5182.
Most genes from the plant-specific family encoding Response to Low Sulphur (LSU)-like proteins are strongly induced in sulphur (S)-deficient conditions. The exact role of these proteins remains unclear; however, some data suggest their importance for plants’ adjustment to nutrient deficiency and other environmental stresses. This work established that the regulation of ethylene signalling is a part of plants’ response to S deficiency and showed the interaction between UP9C, a tobacco LSU family member, and one of the tobacco isoforms of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO2A). Increase in ethylene level induced by S deficiency does not take place in tobacco plants with UP9C expressed in an antisense orientation. Based on transcriptomics data, this work also demonstrated that the majority of tobacco’s response to S deficiency is misregulated in plants expressing UP9C-antisense. A link between response to S deficiency, ethylene sensing, and LSU-like proteins was emphasized by changes in expression of the genes encoding ethylene receptors and F-box proteins specific for the ethylene pathway.
PMCID: PMC3830492  PMID: 24085579
Ethylene; response to nutrients deficit; sulphate; sulphur deficiency; tobacco; transcriptome; transgenic plants.
3.  Nitric oxide in plants: an assessment of the current state of knowledge 
AoB Plants  2013;5:pls052.
Nitric oxide (NO) is a plant signal contributing to plant stress responses and development. We here review some of the key advances in this field but also highlight certain key aspects of plant NO biology that require further attention.
Background and aims
After a series of seminal works during the last decade of the 20th century, nitric oxide (NO) is now firmly placed in the pantheon of plant signals. Nitric oxide acts in plant–microbe interactions, responses to abiotic stress, stomatal regulation and a range of developmental processes. By considering the recent advances in plant NO biology, this review will highlight certain key aspects that require further attention.
Scope and conclusions
The following questions will be considered. While cytosolic nitrate reductase is an important source of NO, the contributions of other mechanisms, including a poorly defined arginine oxidizing activity, need to be characterized at the molecular level. Other oxidative pathways utilizing polyamine and hydroxylamine also need further attention. Nitric oxide action is dependent on its concentration and spatial generation patterns. However, no single technology currently available is able to provide accurate in planta measurements of spatio-temporal patterns of NO production. It is also the case that pharmaceutical NO donors are used in studies, sometimes with little consideration of the kinetics of NO production. We here include in planta assessments of NO production from diethylamine nitric oxide, S-nitrosoglutathione and sodium nitroprusside following infiltration of tobacco leaves, which could aid workers in their experiments. Further, based on current data it is difficult to define a bespoke plant NO signalling pathway, but rather NO appears to act as a modifier of other signalling pathways. Thus, early reports that NO signalling involves cGMP—as in animal systems—require revisiting. Finally, as plants are exposed to NO from a number of external sources, investigations into the control of NO scavenging by such as non-symbiotic haemoglobins and other sinks for NO should feature more highly. By crystallizing these questions the authors encourage their resolution through the concerted efforts of the plant NO community.
PMCID: PMC3560241  PMID: 23372921
4.  Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production 
Several recent publications reported different subcellular localization of the sucrose transporters belonging to the SUT4 subfamily. The physiological function of the SUT4 sucrose transporters requires clarification, because down-regulation of the members of the SUT4 clade had different effects in rice, poplar, and potato. Here, we provide new data for the localization and function of the Solanaceous StSUT4 protein, further elucidating involvement in the onset of flowering, tuberization and in the shade avoidance syndrome of potato plants. Induction of an early flowering and a tuberization in the SUT4-inhibited potato plants correlates with increased sucrose export from leaves and increased sucrose and starch accumulation in terminal sink organs, such as developing tubers. SUT4 affects expression of the enzymes involved in gibberellin and ethylene biosynthesis, as well as the rate of ethylene biosynthesis in potato. In the SUT4-inhibited plants, the ethylene production no longer follows a diurnal rhythm. Thus it was concluded that StSUT4 controls circadian gene expression, potentially by regulating sucrose export from leaves. Furthermore, SUT4 expression affects clock-regulated genes such as StFT, StSOC1, and StCO, which might be also involved in a photoperiod-dependent tuberization. A model is proposed in which StSUT4 controls a phloem-mobile signaling molecule generated in leaves, which together with enhanced sucrose export affects developmental switches in apical meristems. SUT4 seems to link photoreceptor-perceived information about the light quality and day length with phytohormone biosynthesis and the expression of circadian-regulated genes.
PMCID: PMC3576705  PMID: 23429841
flowering; shade avoidance syndrome; sucrose transport; ethylene
5.  Online, real-time detection of volatile emissions from plant tissue 
AoB Plants  2013;5:plt003.
Using sensitive and real-time detection of volatiles from plants with state-of-the-art laser based- and mass spectrometry-based methods many, hypotheses can be tested, revealing the role of the key elements in signalling and action mechanisms in plants.
Trace gas monitoring plays an important role in many areas of life sciences ranging from agrotechnology, microbiology, molecular biology, physiology, and phytopathology. In plants, many processes can be followed by their low-concentration gas emission, for compounds such as ethylene, nitric oxide, ethanol or other volatile organic compounds (VOCs). For this, numerous gas-sensing devices are currently available based on various methods. Among them are the online trace gas detection methods; these have attracted much interest in recent years. Laser-based infrared spectroscopy and proton transfer reaction mass spectrometry are the two most widely used methods, thanks to their high sensitivity at the single part per billion level and their response time of seconds. This paper starts with a short description of each method and presents performances within a wide variety of biological applications. Using these methods, the dynamics of trace gases for ethylene, nitric oxide and other VOCs released by plants under different conditions are recorded and analysed under natural conditions. In this way many hypotheses can be tested, revealing the role of the key elements in signalling and action mechanisms in plants.
PMCID: PMC3578185  PMID: 23429357
Ethylene; laser-based detection; nitric oxide; plant volatiles; proton transfer reaction mass spectrometry; real-time emission; trace gas detection; volatile organic compounds
6.  The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco 
Journal of Experimental Botany  2012;64(2):553-568.
Different forms of nitrogen (N) fertilizer affect disease development; however, this study investigated the effects of N forms on the hypersensitivity response (HR)—a pathogen-elicited cell death linked to resistance. HR-eliciting Pseudomonas syringae pv. phaseolicola was infiltrated into leaves of tobacco fed with either or . The speed of cell death was faster in -fed compared with -fed plants, which correlated, respectively, with increased and decreased resistance. Nitric oxide (NO) can be generated by nitrate reductase (NR) to influence the formation of the HR. NO generation was reduced in -fed plants where N assimilation bypassed the NR step. This was similar to that elicited by the disease-forming P. syringae pv. tabaci strain, further suggesting that resistance was compromised with feeding. PR1a is a biomarker for the defence signal salicylic acid (SA), and expression was reduced in -fed compared with fed plants at 24h after inoculation. This pattern correlated with actual SA measurements. Conversely, total amino acid, cytosolic and apoplastic glucose/fructose and sucrose were elevated in - treated plants. Gas chromatography/mass spectroscopy was used to characterize metabolic events following different N treatments. Following nutrition, polyamine biosynthesis was predominant, whilst after nutrition, flux appeared to be shifted towards the production of 4-aminobutyric acid. The mechanisms whereby feeding enhances SA, NO, and polyamine-mediated HR-linked defence whilst these are compromised with , which also increases the availability of nutrients to pathogens, are discussed.
PMCID: PMC3542047  PMID: 23230025
ammonium; hypersensitive response; nitrate; nitric oxide; Pseudomonas; tobacco
7.  Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana  
Journal of Experimental Botany  2012;63(15):5581-5591.
Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1–1.0% O2), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways.
PMCID: PMC3444272  PMID: 22915746
Ethylene; flooding; haemoglobin; hyponastic growth; hypoxia; nitric oxide (NO)
8.  Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens 
Journal of Experimental Botany  2012;63(12):4375-4387.
Nitric oxide (NO) plays a role in defence against hemibiotrophic pathogens mediated by salicylate (SA) and also necrotrophic pathogens influenced by jasmonate/ethylene (JA/Et). This study examined how NO-oxidizing haemoglobins (Hb) encoded by GLB1, GLB2, and GLB3 in Arabidopsis could influence both defence pathways. The impact of Hb on responses to the hemibiotrophic Pseudomonas syringae pathovar tomato (Pst) AvrRpm1 and the necrotrophic Botrytis cinerea were investigated using glb1, glb2, and glb3 mutant lines and also CaMV 35S GLB1 and GLB2 overexpression lines. In glb1, but not glb2 and glb3, increased resistance was observed to both pathogens but was compromised in the 35S-GLB1. A quantum cascade laser-based sensor measured elevated NO production in glb1 infected with Pst AvrRpm1 and B. cinerea, which was reduced in 35S-GLB1 compared to Col-0. SA accumulation was increased in glb1 and reduced in 35S-GLB1 compared to controls following attack by Pst AvrRpm1. Similarly, JA and Et levels were increased in glb1 but decreased in 35S-GLB1 in response to attack by B. cinerea. Quantitative PCR assays indicated reduced GLB1 expression during challenge with either pathogen, thus this may elevate NO concentration and promote a wide-ranging defence against pathogens.
PMCID: PMC3421983  PMID: 22641422
Botrytis cinerea, haemoglobin, hypersensitive response, nitric oxide, Pseudomomas syringae, salicylic acid.
9.  Real-time analysis of sulfur-containing volatiles in Brassica plants infested with root-feeding Delia radicum larvae using proton-transfer reaction mass spectrometry 
AoB Plants  2012;2012:pls021.
Proton Transfer Reaction-Mass Spectrometry (PTR-MS) analyses revealed that damaged Brassica roots emit sulfur-containing volatiles. B. nigra, B. juncea and B. napus emitted isothiocyanate markers, whereas B. rapa, B. oleracea, and B. carinata emitted methanethiol. These compounds can be used as markers for root damage by insect larvae and other below-ground herbivores.
Background and aims
Plants damaged by herbivores emit a variety of volatile organic compounds (VOCs). Here we used proton-transfer reaction mass spectrometry (PTR-MS) as a sensitive detection method for online analysis of herbivore-induced VOCs. Previously, it was found that Brassica nigra plants emit several sulfur-containing VOCs when attacked by cabbage root fly (Delia radicum) larvae with m/z 60 as a marker for the formation of allylisothiocyanate from the glucosinolate sinigrin. We tested the hypothesis that m/z 60 emission occurs only in plants with sinigrin in their roots. Additionally, we tested the hypothesis that methanethiol, dimethylsulfide and dimethyldisulfide are only emitted after larval infestation.
Proton-transfer reaction mass spectrometry was used to track sulfur-containing VOCs from six different species of Brassica over time. The roots were either artificially damaged or infested with cabbage root fly larvae. Glucosinolate profiles of the roots were analysed using high-pressure liquid chromatography and compared with VOC emissions.
Principal results
Brassica nigra, B. juncea and B. napus primarily emitted m/z 60 directly after artificial damage or root fly infestation. Sulfide and methanethiol emissions from B. nigra and B. juncea also increased after larval damage but much later (6–12 h after damage). Brassica rapa, B. oleracea and B. carinata principally emitted methanethiol after artificial and after larval damage. Brassica oleracea and B. carinata showed some increase in m/z 60 emission after larval damage. Comparison with root glucosinolate profiles revealed that sinigrin cannot be the only precursor for m/z 60.
The principal compound emitted after root damage is determined by the plant species, and not by damage type or root glucosinolate composition. Once determined, the principal compounds may be used as markers for identifying damaged or infested plants. Further analyses of plant enzymes involved in the breakdown of sulfur compounds is needed to reveal the origin of sulfur-containing VOCs from plants.
PMCID: PMC3424660  PMID: 22916330
10.  SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N. suaveolens flowers 
Plant Molecular Biology  2009;70(5):535-546.
S′adenosyl-l-methionine (SAM) is a ubiquitous methyl donor and a precursor in the biosynthesis of ethylene, polyamines, biotin, and nicotianamine in plants. Only limited information is available regarding its synthesis (SAM cycle) and its concentrations in plant tissues. The SAM concentrations in flowers of Nicotiana suaveolens were determined during day/night cycles and found to fluctuate rhythmically between 10 and 50 nmol g−1 fresh weight. Troughs of SAM levels were measured in the evening and night, which corresponds to the time when the major floral scent compound, methyl benzoate, is synthesized by a SAM dependent methyltransferase (NsBSMT) and when this enzyme possesses its highest activity. The SAM synthetase (NsSAMS1) and methionine synthase (NsMS1) are enzymes, among others, which are involved in the synthesis and regeneration of SAM. Respective genes were isolated from a N. suaveolens petal cDNA library. Transcript accumulation patterns of both SAM regenerating enzymes matched perfectly those of the bifunctional NsBSMT; maximum mRNA accumulations of NsMS1 and NsSAMS1 were attained in the evening. Ethylene, which is synthesized from SAM, reached only low levels of 1–2 ppbv in N. suaveolens flowers. It is emitted in a burst at the end of the life span of the flowers, which correlates with the increased expression of the 1-aminocyclopropane-1-carboxylate oxidase (NsACO).
Electronic supplementary material
The online version of this article (doi:10.1007/s11103-009-9490-1) contains supplementary material, which is available to authorized users.
PMCID: PMC2697359  PMID: 19396585
SAM cycle; SAM synthetase; Methionine synthase; ACO; Carboxyl methyltransferase; Nicotiana suaveolens; Floral metabolism; SAM level
11.  Ethylene Production is Associated with Germination but not Seed Dormancy in Red Rice 
Annals of Botany  2007;99(4):735-745.
Background and Aims
The relationship between ethylene production and both seed dormancy and germination was investigated using red rice (weedy rice) as a model species.
Both fully dormant and after-ripened (non-dormant) naked caryopses were incubated with or without inhibitors of ethylene synthesis [aminoethoxyvinylglycine (AVG)] and perception [silver thiosulfate (STS)], or in the presence of the natural ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). The kinetics of ethylene emissions were measured with a sensitive laser–photoacoustic system.
Key Results
Dormant red rice caryopses did not produce ethylene. In non-dormant caryopses, ethylene evolution never preceded the first visible stage of germination (pericarp splitting), and ethylene inhibitors completely blocked ethylene production, but not pericarp splitting. Accordingly, endogenous ACC appeared to be lacking before pericarp splitting. However, early seedling growth (radicle or coleoptile attaining the length of 1 mm) followed ethylene evolution and was delayed by the inhibitors. Wounding the dormant caryopses induced them to germinate and produce ethylene, but their germination was slow and pericarp splitting could be speeded up by ethylene.
The findings suggest that, in red rice, endogenous ethylene stimulates the growth of the nascent seedling, but does not affect seed dormancy or germination inception. Correspondingly, this phytohormone does not play a role in the dormancy breakage induced by wounding, but accelerates germination after such breakage has occurred.
PMCID: PMC2802941  PMID: 17347162
Seed dormancy; red rice; Oryza sativa f. spontanea; ethylene inhibitors; wounding
12.  Ethylene Production by Botrytis cinerea In Vitro and in Tomatoes 
Applied and Environmental Microbiology  2002;68(11):5342-5350.
A laser-based ethylene detector was used for on-line monitoring of ethylene released by the phytopathogenic fungus Botrytis cinerea in vitro and in tomato fruit. Ethylene data were combined with the results of a cytological analysis of germination of B. cinerea conidia and hyphal growth. We found that aminoethoxyvinylglycine and aminooxyacetic acid, which are competitive inhibitors of the 1-aminocyclopropane-1-carboxylic acid pathway, did not inhibit the ethylene emission by B. cinerea and that the fungus most likely produces ethylene via the 2-keto-4-methylthiobutyric acid pathway. B. cinerea is able to produce ethylene in vitro, and the emission of ethylene follows the pattern that is associated with hyphal growth rather than the germination of conidia. Ethylene production in vitro depended on the l-methionine concentration added to the plating medium. Higher values and higher emission rates were observed when the concentration of conidia was increased. Compared with the ethylene released by the fungus, the infection-related ethylene produced by two tomato cultivars (cultivars Money Maker and Daniela) followed a similar pattern, but the levels of emission were 100-fold higher. The time evolution of enhanced ethylene production by the infected tomatoes and the cytological observations indicate that ethylene emission by the tomato-fungus system is not triggered by the ethylene produced by B. cinerea, although it is strongly synchronized with the growth rate of the fungus inside the tomato.
PMCID: PMC129912  PMID: 12406723

Results 1-12 (12)