PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Microsatellite Marker Analysis Reveals the Complex Phylogeographic History of Rhododendron ferrugineum (Ericaceae) in the Pyrenees 
PLoS ONE  2014;9(3):e92976.
Genetic variation within plant species is determined by a number of factors such as reproductive mode, breeding system, life history traits and climatic events. In alpine regions, plants experience heterogenic abiotic conditions that influence the population's genetic structure. The aim of this study was to investigate the genetic structure and phylogeographic history of the subalpine shrub Rhododendron ferrugineum across the Pyrenees and the links between the populations in the Pyrenees, the Alps and Jura Mountains. We used 27 microsatellite markers to genotype 645 samples from 29 Pyrenean populations, three from the Alps and one from the Jura Mountains. These data were used to estimate population genetics statistics such as allelic richness, observed heterozygosity, expected heterozygosity, fixation index, inbreeding coefficient and number of migrants. Genetic diversity was found to be higher in the Alps than in the Pyrenees suggesting colonization waves from the Alps to the Pyrenees. Two separate genetic lineages were found in both the Alps and Pyrenees, with a substructure of five genetic clusters in the Pyrenees where a loss of genetic diversity was noted. The strong differentiation among clusters is maintained by low gene flow across populations. Moreover, some populations showed higher genetic diversity than others and presented rare alleles that may indicate the presence of alpine refugia. Two lineages of R. ferrugineum have colonized the Pyrenees from the Alps. Then, during glaciation events R. ferrugineum survived in the Pyrenees in different refugia such as lowland refugia at the eastern part of the chain and nunataks at high elevations leading to a clustered genetic pattern.
doi:10.1371/journal.pone.0092976
PMCID: PMC3965482  PMID: 24667824
2.  Conservation genetics of the rare Pyreneo-Cantabrian endemic Aster pyrenaeus (Asteraceae) 
AoB Plants  2011;2011:plr029.
Background and aims
Aster pyrenaeus (Asteraceae) is an endangered species, endemic to the Pyrenees and Cantabrian Mountain ranges (Spain). For its long-term persistence, this taxon needs an appropriate conservation strategy to be implemented. In this context, we studied the genetic structure over the entire geographical range of the species and then inferred the genetic relationships between populations.
Methodology
Molecular diversity was analysed for 290 individuals from 12 populations in the Pyrenees and the Cantabrian Mountains using inter simple sequence repeats (ISSRs). Bayesian-based analysis was applied to examine population structure.
Principal results
Analysis of genetic similarity and diversity, based on 87 polymorphic ISSR markers, suggests that despite being small and isolated, populations have an intermediate genetic diversity level (P % = 52.8 %, HE = 0.21 ± 0.01, genetic similarity between individuals = 49.6 %). Genetic variation was mainly found within populations (80–84 %), independently of mountain ranges, whereas 16–18 % was found between populations and <5 % between mountain ranges. Analyses of molecular variance indicated that population differentiation was highly significant. However, no significant correlation was found between the genetic and geographical distances among populations (Rs = 0.359, P = 0.140). Geographical structure based on assignment tests identified five different gene pools that were independent of any particular structure in the landscape.
Conclusions
The results suggest that population isolation is probably relatively recent, and that the outbreeding behaviour of the species maintains a high within-population genetic diversity. We assume that some long-distance dispersal, even among topographically remote populations, may be determinant for the pattern of genetic variation found in populations. Based on these findings, strategies are proposed for genetic conservation and management of the species.
doi:10.1093/aobpla/plr029
PMCID: PMC3244905  PMID: 22476499

Results 1-2 (2)