PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Seed Germination Ecology of Echinochloa glabrescens and Its Implication for Management in Rice (Oryza sativa L.) 
PLoS ONE  2014;9(3):e92261.
Echinochloa glabrescens is a C4 grass weed that is very competitive with rice when left uncontrolled. The competitive ability of weeds is intensified in direct-seeded rice production systems. A better understanding is needed of factors affecting weed seed germination, which can be used as a component of integrated weed management in direct-seeded rice. This study was conducted to determine the effects of temperature, light, salt and osmotic stress, burial depth, crop residue, time and depth of flooding, and herbicide application on the emergence, survival, and growth of two populations [Nueva Ecija (NE) and Los Baños (IR)] of E. glabrescens. Seeds from both populations germinated at all temperatures. The NE population had a higher germination rate (88%) from light stimulation than did the IR population (34%). The salt concentration and osmotic potential required to inhibit 50% of germination were 313 mM and −0.24 MPa, respectively, for the NE population and 254 mM and −0.33 MPa, respectively, for the IR population. Emergence in the NE population was totally inhibited at 4-cm burial depth in the soil, whereas that of the IR population was inhibited at 8 cm. Compared with zero residue, the addition of 5 t ha−1 of rice residue reduced emergence in the NE and IR populations by 38% and 9%, respectively. Early flooding (within 2 days after sowing) at 2-cm depth reduced shoot growth by 50% compared with non-flooded conditions. Pretilachlor applied at 0.075 kg ai ha−1 followed by shallow flooding (2-cm depth) reduced seedling emergence by 94−96% compared with the nontreated flooded treatment. Application of postemergence herbicides at 4-leaf stage provided 85−100% control in both populations. Results suggest that integration of different strategies may enable sustainable management of this weed and of weeds with similar germination responses.
doi:10.1371/journal.pone.0092261
PMCID: PMC3958481  PMID: 24642568
2.  Adaptation to flooding during emergence and seedling growth in rice and weeds, and implications for crop establishment 
AoB Plants  2012;2012:pls019.
Direct seeding is replacing transplanting in rice. Early flooding suppresses weeds but selective action is compromised by the sharing of flood-tolerance traits. Understanding adaptive traits in both species is therefore a prerequisite for developing direct seeding systems that control weeds while leaving rice seedlings relatively unharmed.
Background and aims
Direct seeding of rice is being adopted in rainfed and irrigated lowland ecosystems because it reduces labour costs in addition to other benefits. However, early flooding due to uneven fields or rainfall slows down seed germination and hinders crop establishment. Conversely, early flooding helps suppress weeds and reduces the costs of manual weeding and/or dependence on herbicides; however, numerous weed species are adapted to lowlands and present challenges for the use of flooding to control weeds. Advancing knowledge on the mechanisms of tolerance of flooding during germination and early growth in rice and weeds could facilitate the development of improved rice varieties and effective weed management practices for direct-seeded rice.
Principal results
Rice genotypes with a greater ability to germinate and establish in flooded soils were identified, providing opportunities to develop varieties suitable for direct seeding in flooded soils. Tolerance of flooding in these genotypes was mostly attributed to traits associated with better ability to mobilize stored carbohydrates and anaerobic metabolism. Limited studies were undertaken in weeds associated with lowland rice systems. Remaining studies compared rice and weeds and related weed species such as Echinochloa crus-galli and E. colona or compared ecotypes of the same species of Cyperus rotundus adapted to either aerobic or flooded soils.
Conclusions
Tolerant weeds and rice genotypes mostly developed similar adaptive traits that allow them to establish in flooded fields, including the ability to germinate and elongate faster under hypoxia, mobilize stored starch reserves and generate energy through fermentation pathways. Remarkably, some weeds developed additional traits such as larger storage tubers that enlarge further in deeper flooded soils (C. rotundus). Unravelling the mechanisms involved in adaptation to flooding will help design management options that will allow tolerant rice genotypes to adequately establish in flooded soils while simultaneously suppressing weeds.
doi:10.1093/aobpla/pls019
PMCID: PMC3434364  PMID: 22957137
3.  Adaptation to flooding in upland and lowland ecotypes of Cyperus rotundus, a troublesome sedge weed of rice: tuber morphology and carbohydrate metabolism 
Annals of Botany  2008;103(2):295-302.
Background and aims
In recent years, Cyperus rotundus has become a problem weed in lowland rice (Oryza sativa) grown in rotation with vegetables in the Philippines. As the growth of C. rotundus is commonly suppressed by prolonged flooding, the ability of the weed to grow vigorously in flooded as well as upland conditions suggests that adapted ecotypes occur in these rotations. Studies were conducted to elucidate the mechanisms that permit C. rotundus to tolerate flooded soil conditions.
Methods
Upland and lowland ecotypes of C. rotundus were compared in terms of growth habit, carbohydrate reserves and metabolism, and activities of enzymes involved in alcoholic fermentation – alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC).
Key Results
The lowland ecotype has much larger tubers than the upland ecotype. Prior to germination, the amylase activity and total non-structural carbohydrate content in the form of soluble sugars were greater in the tubers of lowland plants than in those of upland C. rotundus. At 24 h after germination in hypoxic conditions, PDC and ADH activities in the lowland plants increased, before decreasing at 48 h following germination. In contrast, ADH and PDC activities in the upland plants increased from 24 to 48 h after germination.
Conclusions
Tolerance of lowland C. rotundus of flooding may be attributed to large carbohydrate content and amylase activity, and the ability to maintain high levels of soluble sugars in the tubers during germination and early growth. This is coupled with the modulation of ADH and PDC activities during germination, possibly to control the use of carbohydrate reserves and sustain substrate supply in order to avoid starvation and death of seedlings with prolonged flooding.
doi:10.1093/aob/mcn085
PMCID: PMC2707299  PMID: 18515404
Anoxia; ethanol fermentation; flooding tolerance; nutsedge; Cyperus rotundus; Pasteur effect; weed ecology
4.  Morphological and physiological responses of lowland purple nutsedge (Cyperus rotundus L.) to flooding 
AoB Plants  2010;2010:plq010.
Comparing a lowland and an upland ecotype of Cyperus rotundus, the former had greater carbohydrate reserves in tubers, thicker roots and stems with larger air spaces and, under hypoxia, it maintained relatively lower activities of alcohol dehydrogenase and lactate dehydrogenase.
Background and aims
Purple nutsedge (Cyperus rotundus L.) is a major weed of upland crops and vegetables. Recently, a flood-tolerant ecotype evolved as a serious weed in lowland rice. This study attempted to establish the putative growth and physiological features that led to this shift in adaptation.
Methodology
Tubers of upland C. rotundus (ULCR) and lowland C. rotundus (LLCR) ecotypes were collected from their native habitats and maintained under the respective growth conditions in a greenhouse. Five experiments were conducted to assess the variation between the two ecotypes in germination, growth and tuber morphology when grown in their native or ‘switched’ conditions. Carbohydrate storage and mobilization, and variation in anaerobic respiration under hypoxia were compared.
Principal results
Tubers of LLCR were larger than those of ULCR, with higher carbohydrate content, and larger tubers developed with increasing floodwater depth. Stems of LLCR had larger diameter and proportionally larger air spaces than those of ULCR: a method of aerating submerged plant parts. The LLCR ecotype can also mobilize and use carbohydrate reserves under hypoxia, and it maintained relatively lower and steadier activity of alcohol dehydrogenase (ADH) as a measure of sustained anaerobic respiration. In contrast, ADH activity in ULCR increased faster upon a shift to hypoxia and then sharply decreased, suggesting depletion of available soluble sugar substrates. The LLCR ecotype also maintained lower lactate dehydrogenase activity under flooded conditions, which could reduce chances of cellular acidosis.
Conclusions
These adaptive traits in the LLCR ecotype were expressed constitutively, but some of them, such as tuber growth and aerenchyma development, are enhanced with stress severity. The LLCR ecotype attained numerous adaptive traits that could have evolved as a consequence of natural evolution or repeated management practices, and alternative strategies are necessary because flooding is no longer a feasible management option.
doi:10.1093/aobpla/plq010
PMCID: PMC3000701  PMID: 22476068

Results 1-4 (4)