Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Attributable costs of ventilator-associated lower respiratory tract infection (LRTI) acquired on intensive care units: a retrospectively matched cohort study 
Lower respiratory tract infections (LRTI) are the most common hospital-acquired infections on ICUs. They have not only an impact on each patient’s individual health but also result in a considerable financial burden for the healthcare system. Our aim was to determine the costs and the length of stay of patients with ICU-acquired LRTI.
We used a retrospectively matched cohort design, comparing patients with ICU-acquired LRTI and ICU patients without LRTI. LRTI was diagnosed using the definitions of the Centers for Disease Control and Prevention (CDC). Study period was from January to December 2010 analyzing patients from 10 different ICUs (medical, surgical, interdisciplinary). The device utilization ratio was defined as number of ventilator days divided by number of patient days and the device-associated LRTI rate was defined as number of ventilator associated LRTI divided by number of ventilator days. Patients were matched by age, sex, and prospectively obtained Simplified Acute Physiology Score II (SAPS II). The length of ICU stay of control patients needed to be at least as long as that of LRTI-patients before onset of LRTI. We used the Wilcoxon signed-rank test for continuous variables and the McNemar’s test for categorical variables.
The analyzed ICUs had 40,772 patient days in the study period with a median ventilation utilization ratio of 56 (IQR 42–65). The median device-associated LRTI rate was 3.35 (IQR 0.96-5.36) per 1,000 ventilation days. We analyzed 49 patients with ICU-acquired LRTI and 49 respective controls without LRTI. The median hospital costs for LRTI patients were significantly higher than for patients without LRTI (45,041 € vs. 26,467 €; p < .001). The attributable costs per LRTI patient were 17,015 € (p < .001). Patients with ICU acquired LRTI stayed longer in the hospital than patients without (36 days vs. 24 days; p = 0.011). An LRTI lead to an attributable increase in length of stay by 9 days (p = 0.011).
ICU-acquired LRTI is associated with increased hospital costs and prolonged hospital stay. Hospital management should therefore implement control measurements to keep the incidence of ICU-acquired LRTI as low as possible.
PMCID: PMC3620937  PMID: 23556425
Lower respiratory tract infection; Intensive care unit; Costs and length of stay
2.  The impact of staffing on central venous catheter-associated bloodstream infections in preterm neonates – results of nation-wide cohort study in Germany 
Very low birthweight (VLBW) newborns on neonatal intensive care units (NICU) are at increased risk for developing central venous catheter-associated bloodstream infections (CVC BSI). In addition to the established intrinsic risk factors of VLBW newborns, it is still not clear which process and structure parameters within NICUs influence the prevalence of CVC BSI.
The study population consisted of VLBW newborns from NICUs that participated in the German nosocomial infection surveillance system for preterm infants (NEO-KISS) from January 2008 to June 2009. Structure and process parameters of NICUs were obtained by a questionnaire-based enquiry. Patient based date and the occurrence of BSI derived from the NEO-KISS database. The association between the requested parameters and the occurrance of CVC BSI and laboratory-confirmed BSI was analyzed by generalized estimating equations.
We analyzed data on 5,586 VLBW infants from 108 NICUs and found 954 BSI cases in 847 infants. Of all BSI cases, 414 (43%) were CVC-associated. The pooled incidence density of CVC BSI was 8.3 per 1,000 CVC days. The pooled CVC utilization ratio was 24.3 CVC-days per 100 patient days. A low realized staffing rate lead to an increased risk of CVC BSI (OR 1.47; p=0.008) and also of laboratory-confirmed CVC BSI (OR 1.78; p=0.028).
Our findings show that low levels of realized staffing are associated with increased rates of CVC BSI on NICUs. Further studies are necessary to determine a threshold that should not be undercut.
PMCID: PMC3643825  PMID: 23557510
Staffing; CVC; BSI; NICU; VLBW
3.  Concordance between European and US case definitions of healthcare-associated infections 
Surveillance of healthcare-associated infections (HAI) is a valuable measure to decrease infection rates. Across Europe, inter-country comparisons of HAI rates seem limited because some countries use US definitions from the US Centers for Disease Control and Prevention (CDC/NHSN) while other countries use European definitions from the Hospitals in Europe Link for Infection Control through Surveillance (HELICS/IPSE) project. In this study, we analyzed the concordance between US and European definitions of HAI.
An international working group of experts from seven European countries was set up to identify differences between US and European definitions and then conduct surveillance using both sets of definitions during a three-month period (March 1st -May 31st, 2010). Concordance between case definitions was estimated with Cohen’s kappa statistic (κ).
Differences in HAI definitions were found for bloodstream infection (BSI), pneumonia (PN), urinary tract infection (UTI) and the two key terms “intensive care unit (ICU)-acquired infection” and “mechanical ventilation”. Concordance was analyzed for these definitions and key terms with the exception of UTI. Surveillance was performed in 47 ICUs and 6,506 patients were assessed. One hundred and eighty PN and 123 BSI cases were identified. When all PN cases were considered, concordance for PN was κ = 0.99 [CI 95%: 0.98-1.00]. When PN cases were divided into subgroups, concordance was κ = 0.90 (CI 95%: 0.86-0.94) for clinically defined PN and κ = 0.72 (CI 95%: 0.63-0.82) for microbiologically defined PN. Concordance for BSI was κ = 0.73 [CI 95%: 0.66-0.80]. However, BSI cases secondary to another infection site (42% of all BSI cases) are excluded when using US definitions and concordance for BSI was κ = 1.00 when only primary BSI cases, i.e. Europe-defined BSI with ”catheter” or “unknown” origin and US-defined laboratory-confirmed BSI (LCBI), were considered.
Our study showed an excellent concordance between US and European definitions of PN and primary BSI. PN and primary BSI rates of countries using either US or European definitions can be compared if the points highlighted in this study are taken into account.
PMCID: PMC3527198  PMID: 22958646
Bloodstream infection; Pneumonia; Definitions; Healthcare-associated infections
4.  The step from a voluntary to a mandatory national nosocomial infection surveillance system: the influence on infection rates and surveillance effect 
The German national nosocomial infection surveillance system, KISS, has a component for very low birth weight (VLBW) infants (called NEO-KISS) which changed from a system with voluntary participation and confidential data feedback to a system with mandatory participation and confidential feedback.
In order to compare voluntary and mandatory surveillance data, two groups were defined by the surveillance start date. Neonatal intensive care unit (NICU) parameters and infection rates of the NICUs in both groups were compared. In order to analyze the surveillance effect on primary bloodstream infection rates (BSI), all VLBW infants within the first three years of participation in both groups were considered. The adjusted effect measures for the year of participation were calculated.
An increase from 49 NICUs participating in 2005 to 152 in 2006 was observed after the introduction of mandatory participation. A total of 4280 VLBW infants was included in this analysis. Healthcare-associated incidence densities rates were similar in both groups. Using multivariate analysis with the endpoint primary BSI rate and comparing the first and third year of participation lead to an adjusted incidence rate ratio (IRR) of 0.78 (CI95 0.66-0.93) for old (voluntary) and 0.81 (CI95 0.68-0.97) for new (mandatory) participants.
The step from a voluntary to a mandatory HCAI surveillance system alone may lead to substantial improvements on a countrywide scale.
PMCID: PMC3489557  PMID: 22958509
Surveillance; Nosocomial infections; Neonatal intensive care unit; Bloodstream infection
5.  Individual units rather than entire hospital as the basis for improvement: the example of two Methicillin resistant Staphylococcus aureus cohort studies 
Two MRSA surveillance components exist within the German national nosocomial infection surveillance system KISS: one for the whole hospital (i.e. only hospital based data and no rates for individual units) and one for ICU-based data (rates for each individual ICU). The objective of this study was to analyze which surveillance system (a hospital based or a unit based) leads to a greater decrease in incidence density of nosocomial MRSA
Two cohort studies of surveillance data were used: Data from a total of 224 hospitals and 359 ICUs in the period from 2004 to 2009. Development over time was described first for both surveillance systems. In a second step only data were analyzed from those hospitals/ICUs with continuous participation for at least four years. Incidence rate ratios (IRR) with 95% confidence intervals were calculated to compare incidence densities between different time intervals.
In the baseline year the mean MRSA incidence density of hospital acquired MRSA cases was 0.25 and the mean incidence density of ICU-acquired MRSA was 1.25 per 1000 patient days. No decrease in hospital-acquired MRSA rates was found in a total of 111 hospitals with continuous participation in the hospital- based system. However, in 159 ICUs with continuous participation in the unit-based system, a significant decrease of 29% in ICU-acquired MRSA was identified.
A unit-based approach of surveillance and feedback seems to be more successful in decreasing nosocomial MRSA rates, compared to a hospital-based approach. Therefore each surveillance system should provide unit-based data to stimulate activities on the unit level.
PMCID: PMC3436609  PMID: 22958320
Infection prevention; Surveillance; MRSA; Quality management
6.  Decreasing healthcare-associated infections (HAI) is an efficient method to decrease healthcare-associated Methicillin-resistant S.aureus (MRSA) infections Antimicrobial resistance data from the German national nosocomial surveillance system KISS 
By analysing the data of the intensive care unit (ICU) component of the German national nosocomial infection surveillance system (KISS) during the last ten years, we have observed a steady increase in the MRSA rates (proportions) from 2001 to 2005 and only a slight decrease from 2006 to 2010. The objective of this study was to investigate the development of the incidence density of nosocomial MRSA infections because this is the crucial outcome for patients.
Data from 103 ICUs with ongoing participation during the observation period were included. The pooled incidence density of nosocomial MRSA infections decreased significantly from 0.37 per 1000 patient days in 2001 to 0.15 per 1000 patient days in 2010 (RR = 0.40; CI95 0.29-0.55). This decrease was proportional to the significant decrease of all HCAI during the same time period (RR = 0.61; CI95 0.58-0.65).
The results underline the need to concentrate infection control activities on measures to control HCAI in general rather than focusing too much on specific MRSA prevention measures. MRSA rates (proportions) are not a very useful indicator of the situation.
PMCID: PMC3415117  PMID: 22958746
Surveillance; MRSA; epidemiology; Staphylococcus aureus
7.  Screening and control of methicillin-resistant Staphylococcus aureus in 186 intensive care units: different situations and individual solutions 
Critical Care  2011;15(6):R285.
Controversy exists about the benefit of screening for prevention of methicillin-resistant Staphylococcus aureus (MRSA) in intensive care units (ICUs) and recent studies have shown conflicting results. The aim of this observational study was to describe and evaluate the association between MRSA incidence densities (IDs) and screening and control measures in ICUs participating in the German Nosocomial Infection Surveillance System.
The surveillance module for multidrug-resistant bacteria collects data on MRSA cases in ICUs with the aim to provide a national reference and a tool for evaluation of infection control management. The median IDs of MRSA cases per 1000 patient-days (pd) with the interquartile range (IQR) were calculated from the pooled data of 186 ICUs and correlated with parameters derived from a detailed questionnaire regarding ICU structure, microbiological diagnostics and MRSA screening and control measures. The association between questionnaire results and MRSA cases was evaluated by generalized linear regression models.
One hundred eighty-six ICUs submitted data on MRSA cases for 2007 and 2008 and completed the questionnaire. During the period of analysis, 4935 MRSA cases occurred in these ICUs; of these, 3928 (79.6%) were imported and 1007 MRSA cases (20.4%) were ICU-acquired. Median MRSA IDs were 3.23 (IQR 1.24-5.73), 2.24 (IQR 0.63-4.30) and 0.64 (IQR 0.17-1.39) per 1000 pd for all cases, imported and ICU-acquired MRSA cases, respectively. MRSA IDs as well as implemented MRSA screening and control measures varied widely between ICUs. ICUs performing universal admission screening had significantly higher MRSA IDs than ICUs performing targeted or no screening. Separate regression models for ICUs with different screening strategies included the incidence of imported MRSA cases, the type of ICU, and the length of stay in independent association with the number of ICU-acquired MRSA cases.
The analysis shows that MRSA IDs and structural parameters differ considerably between ICUs. In response, ICUs have combined screening and control measures in many ways to achieve various individual solutions. The incidence of imported MRSA cases might be helpful for consideration in the planning of MRSA control programmes.
PMCID: PMC3388634  PMID: 22118016
8.  Nosocomial infection in small for gestational age newborns with birth weight <1500 g: a multicentre analysis 
To investigate whether preterm newborns who are small for gestational age are at increased risk of nosocomial infections and necrotising enterocolitis.
Design, setting and subjects
The German national surveillance system for nosocomial infection in very low birthweight infants uses the US Centers for Disease Control and Prevention criteria. 2918 newborns (24–28 weeks), born between 2000 and 2004, were selected after application of predefined inclusion criteria to ensure similar proportions of small and appropriate weight for gestational age newborns across gestational age groups.
Main outcome measures
The outcome criterion was at least one episode of nosocomial sepsis, pneumonia or necrotising enterocolitis. Adjusted odds ratios and corresponding 95% CIs were calculated based on general estimating equation models.
The study population consisted of 13% (n = 392) small and 87% (n = 2526) appropriate weight for gestational age infants. 33% (n = 950) of the infants experienced at least one episode of sepsis: 42% (n = 163) of small and 31% (n = 787) of appropriate weight for gestational age newborns (adjusted OR 1.41, 95% CI 1.05 to 1.89). Pneumonia was diagnosed in 6% (n = 171) of infants: 8.4% (n = 33) of small and 5.5% (n = 138) of appropriate weight for gestational age newborns (adjusted OR 1.57, 95% CI 1.19 to 5.57). Necrotising enterocolitis was documented in 5.2% (n = 152) of infants: 7.1% (n = 28) of small and 4.9% of (n = 124) appropriate weight for gestational age newborns (adjusted OR 1.20, 95% confidence interval 0.75 to 1.94).
Growth‐retarded preterm infants seem to be at increased risk of nosocomial infection, irrespective of the responsible pathogen. Future immunological research should elucidate potential causal associations.
PMCID: PMC2675389  PMID: 17460021
9.  Early- and Late-Onset Pneumonia: Is This Still a Useful Classification?▿  
The choice of empirical treatment of nosocomial pneumonia in the intensive-care unit (ICU) used to rely on the interval after the start of mechanical ventilation. Nowadays, however, the question of whether in fact there is a difference in the distribution of causative pathogens is under debate. Data from 308 ICUs from the German National Nosocomial Infection Surveillance System, including information on relevant pathogens isolated in 11,285 cases of nosocomial pneumonia from 1997 to 2004, were used for our evaluation. Each individual pneumonia case was allocated either to early- or to late-onset pneumonia, with three differentiation criteria: onset on the 4th day, the 5th day, or the 7th day in the ICU. The frequency of pathogens was evaluated according to these categories. A total of 5,066 additional cases of pneumonia were reported from 2005 to 2006, after the CDC criteria had been modified. From 1997 to 2004, the most frequent microorganisms were Staphylococcus aureus (2,718 cases, including 720 with methicillin [meticillin]-resistant S. aureus), followed by Pseudomonas aeruginosa (1,837 cases), Klebsiella pneumoniae (1,305 cases), Escherichia coli (1,137 cases), Enterobacter spp. (937 cases), streptococci (671 cases), Haemophilus influenzae (509 cases), Acinetobacter spp. (493 cases), and Stenotrophomonas maltophilia (308 cases). The order of the four most frequent pathogens (accounting for 53.7% of all pathogens) was the same in both groups and was independent of the cutoff categories applied: S. aureus was first, followed by P. aeruginosa, K. pneumoniae, and E. coli. Thus, the predictabilities of the occurrence of pathogens were similar for the earlier (1997-to-2004) and later (2005-to-2006) time frames. This classification is no longer helpful for empirical antibiotic therapy, since the pathogens are the same for both groups.
PMCID: PMC2704703  PMID: 19364852
11.  Risk factors for the development of nosocomial pneumonia and mortality on intensive care units: application of competing risks models 
Critical Care  2008;12(2):R44.
Pneumonia is a very common nosocomial infection in intensive care units (ICUs). Many studies have investigated risk factors for the development of infection and its consequences. However, the evaluation in most of theses studies disregards the fact that there are additional competing events, such as discharge or death.
A prospective cohort study was conducted over 18 months in five intensive care units at one university hospital. All patients that were admitted for at least 2 days were included, and surveillance of nosocomial pneumonia was conducted. Various potential risk factors (baseline- and time-dependent) were evaluated in two competing risks models: the acquisition of nosocomial pneumonia and discharge (dead or alive; model 1) and for the risk of death in the ICU and discharge alive (model 2).
Patients from 1,876 admissions were included. A total of 158 patients developed nosocomial pneumonia. The main risk factors for nosocomial pneumonia in the multivariate analysis in model 1 were: elective surgery (cause-specific hazard ratio = 1.95; 95% CI 1.33 to 2.85) or emergency surgery (1.59; 95% CI 1.10 to 2.28) prior to ICU admission, usage of a nasogastric tube (3.04; 95% CI 1.25 to 7.37) and mechanical ventilation (5.90; 95% CI 2.47 to 14.09). Nosocomial pneumonia prolonged the length of ICU stay but was not directly associated with a fatal outcome (p = 0.55).
More studies using competing risk models, which provide more accurate data compared to naive survival curves or logistic models, should be carried out to verify the impact of risk factors and patient characteristics for the acquisition of nosocomial infections and infection-associated mortality.
PMCID: PMC2447589  PMID: 18384672

Results 1-11 (11)