PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Inverse Doppler Effects in Broadband Acoustic Metamaterials 
Scientific Reports  2016;6:32388.
The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.
doi:10.1038/srep32388
PMCID: PMC5006168  PMID: 27578317
2.  The antileishmanial agent licochalcone A interferes with the function of parasite mitochondria. 
Antimicrobial Agents and Chemotherapy  1995;39(12):2742-2748.
Our previous studies have shown that licochalcone A, an oxygenated chalcone, has antileishmanial (M. Chen, S.B. Christensen, J. Blom, E. Lemmich, L. Nadelmann, K. Fich, T.G. Theander, and A. Kharazmi, Antimicrob, Agents Chemother. 37:2550-2556, 1993; M. Chen, S.B. Christensen, T.G. Theander, and A. Khrazmi, Antimicrob. Agents Chemother. 38:1339-1344, 1994) and antimalarial (M. Chen, T.G. Theander, S.B. Christensen, L. Hviid, L. Zhai, and A. Kaharazmi, Antimicrob. Agents Chemother. 38:1470-1475, 1994) activities. We have observed that licochalcone A alters the ultrastructure of the mitochondria of Leishmania promastigotes (Chen et al., Antimicrob. Agents Chemother. 37:2550-2556, 1993). The present study was designed to examine this observation further and investigate the mechanism of action of antileishmanial activity of licochalcone A. Electron microscopic studies showed that licochalcone A altered the ultrastructure of Leishmania major promastigote and amastigote mitochondria in a concentration-dependent manner without damaging the organelles of macrophages or the phagocytic function of these cells. Studies on the function of the parasite mitochondria showed that licochalcone A inhibited the respiration of the parasite by the parasites. Moreover, licochalcone A inhibited the activity of the parasite mitochondrial dehydrogenase. The inhibition of the activity of the parasite mitochondrial enzyme correlated well with the changes in the ultrastructure of the mitochondria shown by electron microscopy. These findings demonstrate that licochalcone A alters the ultrastructure and function of the mitochondria of Leishmania parasites.
PMCID: PMC163022  PMID: 8593012
3.  Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. 
Licochalcone A, isolated from Chinese licorice roots, inhibited the in vitro growth of both chloroquine-susceptible (3D7) and chloroquine-resistant (Dd2) Plasmodium falciparum strains in a [3H]hypoxanthine uptake assay. The growth inhibition of the chloroquine-resistant strain by licochalcone A was similar to that of the chloroquine-susceptible strain. To examine the activity of licochalcone A on the different asexual blood stages of the parasite, licochalcone A was added to highly synchronized cultures containing rings, trophozoites, and schizonts. The growth of the parasites at all stages was inhibited by licochalcone A. The in vivo activity of licochalcone A was tested in a mouse model of infection with P. yoelii. Licochalcone A administered either intraperitoneally or orally for 3 to 6 days protected the mice from the otherwise lethal P. yoelii infection. These results demonstrate that licochalcone A exhibits potent antimalarial activity and might be developed into a new antimalarial drug.
PMCID: PMC284578  PMID: 7979274

Results 1-3 (3)