PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  The Novel Azole R126638 Is a Selective Inhibitor of Ergosterol Synthesis in Candida albicans, Trichophyton spp., and Microsporum canis 
R126638 is a novel triazole with in vitro activity similar to that of itraconazole against dermatophytes, Candida spp., and Malassezia spp. In animal models of dermatophyte infections, R126638 showed superior antifungal activity. R126638 inhibits ergosterol synthesis in Candida albicans, Trichophyton mentagrophytes, Trichophyton rubrum, and Microsporum canis at nanomolar concentrations, with 50% inhibitory concentrations (IC50s) similar to those of itraconazole. The decreased synthesis of ergosterol and the concomitant accumulation of 14α-methylsterols provide indirect evidence that R126638 inhibits the activity of CYP51 that catalyzes the oxidative removal of the 14α-methyl group of lanosterol or eburicol. The IC50s for cholesterol synthesis from acetate in human hepatoma cells were 1.4 μM for itraconazole and 3.1 μM for R126638. Compared to itraconazole (IC50 = 3.5 μM), R126638 is a poor inhibitor of the 1α-hydroxylation of 25-hydroxyvitamin D3 (IC50 > 10 μM). Micromolar concentrations of R126638 and itraconazole inhibited the 24-hydroxylation of 25-hydroxyvitamin D3 and the conversion of 1,25-dihydroxyvitamin D3 into polar metabolites. At concentrations up to 10 μM, R126638 had almost no effect on cholesterol side chain cleavage (CYP11A1), 11β-hydroxylase (CYP11B1), 17-hydroxylase and 17,20-lyase (CYP17), aromatase (CYP19), or 4-hydroxylation of all-trans retinoic acid (CYP26). At 10 μM, R126638 did not show clear inhibition of CYP1A2, CYP2A6, CYP2D6, CYP2C8, CYP2C9, CYP2C10, CYP2C19, or CYP2E1. Compared to itraconazole, R126638 had a lower interaction potential with testosterone 6β hydroxylation and cyclosporine hydroxylation, both of which are catalyzed by CYP3A4, whereas both antifungals inhibited the CYP3A4-catalyzed hydroxylation of midazolam similarly. The results suggest that R126638 has promising properties and merits further in vivo investigations for the treatment of dermatophyte and yeast infections.
doi:10.1128/AAC.48.9.3272-3278.2004
PMCID: PMC514767  PMID: 15328084
2.  Genomic Profiling of the Response of Candida albicans to Itraconazole Treatment Using a DNA Microarray 
The application of genome-wide expression profiling to determine how drugs achieve their therapeutic effect has provided the pharmaceutical industry with an exciting new tool for drug mode-of-action studies. We used DNA chip technology to study cellular responses to perturbations of ergosterol biosynthesis caused by the broad-spectrum antifungal agent itraconazole. Simultaneous examination of over 6,600 Candida albicans gene transcript levels, representing the entire genome, upon treatment of cells with 10 μM itraconazole revealed that 296 genes were responsive. For 116 genes transcript levels were decreased at least 2.5-fold, while for 180 transcript levels were similarly increased. A global upregulation of ERG genes in response to azole treatment was observed. ERG11 and ERG5 were found to be upregulated approximately 12-fold. In addition, a significant upregulation was observed for ERG6, ERG1, ERG3, ERG4, ERG10, ERG9, ERG26, ERG25, ERG2, IDII, HMGS, NCP1, and FEN2, all of which are genes known to be involved in ergosterol biosynthesis. The effects of itraconazole on a wide variety of known metabolic processes are discussed. As over 140 proteins with unknown function were responsive to itraconazole, our analysis might provide—in combination with phenotypic data—first hints of their potential function. The present report is the first to describe the application of DNA chip technology to study the response of a major human fungal pathogen to drug treatment.
doi:10.1128/AAC.45.6.1660-1670.2001
PMCID: PMC90529  PMID: 11353609
3.  Accumulation of 3-Ketosteroids Induced by Itraconazole in Azole-Resistant Clinical Candida albicans Isolates 
Antimicrobial Agents and Chemotherapy  1999;43(11):2663-2670.
The effects of itraconazole on ergosterol biosynthesis were investigated in a series of 16 matched clinical Candida albicans isolates which had been previously analyzed for mechanisms of resistance to azoles (D. Sanglard, K. Kuchler, F. Ischer, J. L. Pagani, M. Monod, and J. Bille, Antimicrob. Agents Chemother., 39:2378–2386, 1995). Under control conditions, all isolates contained ergosterol as the predominant sterol, except two strains (C48 and C56). In isolates C48 and C56, both less susceptible to azoles than their parent, C43, substantial concentrations (20 to 30%) of 14α-methyl-ergosta-8,24(28)-diene-3β,6α-diol (3,6-diol) were found. Itraconazole treatment of C43 resulted in a dose-dependent inhibition of ergosterol biosynthesis (50% inhibitory concentration, 2 nM) and accumulation of 3,6-diol (up to 60% of the total sterols) together with eburicol, lanosterol, obtusifoliol, 14α-methyl-ergosta-5,7,22,24(28)-tetraene-3βol, and 14α-methyl-fecosterol. In strains C48 and C56, no further increase of 3,6-diol was observed after exposure to itraconazole. Ergosterol synthesis was less sensitive to itraconazole inhibition, as was expected for these azole-resistant isolates which overexpress ATP-binding cassette transporter genes CDR1 and CDR2. In addition to 3,6-diol, substantial amounts of obtusifolione were found after exposure to itraconazole. This toxic 3-ketosteroid was demonstrated previously to accumulate after itraconazole treatment in Cryptococcus neoformans and Histoplasma capsulatum but has not been reported in Candida isolates. Accumulation of obtusifolione correlated with nearly complete growth inhibition in these azole-resistant strains compared to that found in the susceptible parent strain, although the onset of growth inhibition only occurred at higher concentrations of itraconazole. ERG25 and ERG26 are the only genes assigned to the 4-demethylation process, of which the 3-ketoreductase is part. To verify whether mutations in these ERG25 genes contributed to obtusifolione accumulation, their nucleotide sequences were determined in all three related isolates. No mutations in ERG25 alleles of isolates C48 and C56 were found, suggesting that this gene is not involved in obtusifolione accumulation. The molecular basis for the accumulation of this sterol in these two strains remains to be established.
PMCID: PMC89540  PMID: 10543744

Results 1-3 (3)