Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
2.  Functional Analysis of the Active Site of a Metallo-β-Lactamase Proliferating in Japan 
An R-plasmid-mediated metallo-β-lactamase was found in Klebsiella pneumoniae DK4 isolated in Japan in 1991. The nucleotide sequence of its structural gene revealed that the β-lactamase termed DK4 was identical to the IMP-1 metallo-β-lactamase which was mediated by a chromosomal gene of Serratia marcescens TN9106 isolated in Japan in 1991 (E. Osano et al., Antimicrob. Agents Chemother. 38:71–78, 1994). The dose effect of DK4 β-lactamase production on the resistance levels indicated a significant contribution of the enzyme to bacterial resistance to all the β-lactams except monobactams. The enzymatic characteristics of the DK4 β-lactamase and its kinetic parameters for nine β-lactams were examined. The DK4 β-lactamase was confirmed to contain 2 mol of zinc per mol of enzyme protein. The apoenzyme that lacked the two zincs was structurally unstable, and the activities of only 30% of the apoenzyme molecules could be restored by the addition of 1 mM zinc sulfate. The substitution of five conserved histidines (His28, His86, His88, His149, His210) and a cysteine (Cys168) for an alanine indicated that His86, His88, and His149 served as ligands to one of the zincs and that Cys168 played a role as a ligand to the second zinc. Both zinc molecules contribute to the enzymatic process. Mutant enzymes that lack only one of these retained some activity. Additionally, a conserved aspartic acid at position 90 was replaced by asparagine. This mutant enzyme showed an approximately 1,000 times lower kcat value for cephalothin than that of the wild-type enzyme but retained the two zincs even after dialysis against zinc-free buffer. The observed effect of pH on the activity suggested that Asp90 functions as a general base in the enzymatic process.
PMCID: PMC90062  PMID: 10952572
3.  Amino Acid Substitutions in a Variant of IMP-1 Metallo-β-Lactamase 
In the course of surveying for the carbapenem-hydrolyzing metallo-β-lactamase gene blaIMP in pathogenic bacteria by the PCR method, we detected a gene encoding a variant metallo-β-lactamase, designated IMP-3, which differed from IMP-1 by having low hydrolyzing activity for penicillins and carbapenems. PCR product direct sequencing of a 2.2-kb segment revealed that the gene blaIMP-3 was located on a cassette inserted within a class I integron in the pMS390 plasmid. The 741-bp nucleotide sequence of blaIMP-3 was identical to that of blaIMP-1, except for seven base substitutions. Among these were two, at nucleotide positions 314 and 640, which caused amino acid alterations. Hybrid bla genes were constructed from blaIMP-3 and blaIMP-1 by recombinant DNA techniques, and β-lactamases encoded by these genes were compared with those of the parents IMP-3 and IMP-1 under the same experimental conditions. The kinetic parameters indicated that the inefficient hydrolysis of benzylpenicillin, ampicillin, imipenem, and ceftazidime by IMP-3 was due to the substitution of glycine for serine at amino acid residue 196 in the mature enzyme. This alteration corresponded to the presence of guanine instead of an adenine at nucleotide position 640 of the blaIMP-3 gene. This indicated that extension of the substrate profile in the metallo-β-lactamase IMP-1 compared to IMP-3 is the result of a one-step single-base mutation, suggesting that the gene blaIMP-3 is an ancestor of blaIMP-1.
PMCID: PMC90008  PMID: 10898670
5.  Identification of Functional Amino Acids in the Macrolide 2′-Phosphotransferase II 
Macrolide 2′-phosphotransferase [MPH(2′)] transfers the γ phosphate of ATP to the 2′-OH group of macrolide antibiotics. The role of aspartic acids in the putative ATP-binding site of MPH(2′)II was investigated through the substitution of alanine for aspartate by site-directed mutagenesis. D200A, D209A, D219A, and D231A mutant strains were unable to inactivate the substrate oleandomycin, while a D227A mutant retained 7% of the activity of the original enzyme.
PMCID: PMC89416  PMID: 10428938
6.  Novel Antibiotic Susceptibility Tests by the ATP-Bioluminescence Method Using Filamentous Cell Treatment 
Antimicrobial susceptibility testing by the ATP-bioluminescence method has been noted for its speed; it provides susceptibility results within 2 to 5 h. However, several disagreements between the ATP method and standard methodology have been reported. The present paper describes a novel ATP method in a 3.5-h test which overcomes these deficiencies through the elimination of false-resistance discrepancies in tests on gram-negative bacteria with β-lactam agents. In our test model using Pseudomonas aeruginosa and piperacillin, it was shown that ATP in filamentous cells accounted for the false resistance. We found that 0.5% 2-amino-2-methyl-1,3-propanediol (AMPD) extracted ATP from the filamentous cells without affecting normal cells and that 0.3 U of adenosine phosphate deaminase (APDase)/ml simultaneously digested the extracted ATP. We used the mixture of these reagents for the pretreatment of cells in a procedure we named filamentous cell treatment, prior to ATP measurements. This novel ATP method with the filamentous cell treatment eliminated false-resistance discrepancies in tests on P. aeruginosa with β-lactam agents, including piperacillin, cefoperazone, aztreonam, imipenem-cilastatin, ceftazidime, and cefsulodin. Furthermore, this novel methodology produced results which agreed with those of the standard microdilution method in other tests on gram-negative and gram-positive bacteria, including P. aeruginosa, Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis, for non-β-lactam agents, such as fosfomycin, ofloxacin, minocycline, and aminoglycosides. MICs obtained by the novel ATP method were also in agreement with those obtained by the agar dilution method of susceptibility testing. From these results, it was shown that the novel ATP method could be used successfully to test the activities of antimicrobial agents with the elimination of the previously reported discrepancies.
PMCID: PMC105613  PMID: 9624485
7.  Antibiotic Susceptibility of Enterohemorrhagic Escherichia coli O157:H7 Isolated from an Outbreak in Japan in 1996 
The antibiotic susceptibilities of 43 strains of Escherichia coli O157:H7 identified in the summer of 1996 in Japan were investigated. Growth of 90% of O157 strains was inhibited at a concentration of ≤0.5 μg/ml by several agents including fosfomycin with glucose-6-phosphate.
PMCID: PMC105428  PMID: 9527800
8.  Iodometric Assay Method for Beta-Lactamase with Various Beta-Lactam Antibiotics as Substrates 
The rapid fixed-time assay for penicillinase was modified for measuring β-lactamase activity with twelve substrates, i.e., benzylpenicillin, ampicillin, cloxacillin, methicillin, carbenicillin, cefazolin, cephalothin, cephaloglycin, cephalexin, cephalosporin C, 7-aminocephalosporanic acid, and cefoxitin. The method depends upon the reduction of iodine by the hydrolyzed substrate. Determined experimentally, 1 mol of hydrolyzed penicillins consumed 3.4 to 4.0 mol of iodine (I2). Iodine consumption of hydrolyzed cephalosporins varied widely from 1.7 for cephalothin to 3.7 for cefazolin. The method is useful for routine assay of β-lactamase activity with various substrates.
PMCID: PMC352361  PMID: 677858
9.  Inducible Oxacillin-Hydrolyzing Penicillinase in Aeromonas hydrophila Isolated from Fish 
An inducible penicillinase was shown to be present in a strain of Aeromonas hydrophila subsp. hydrophila isolated from freshwater fish. Enzyme induction was observed with benzylpenicillin or 6-aminopenicillanic acid, and the enzyme was cell bound. The penicillinase was purified 50-fold from a crude cell extract. The molecular weight was estimated to be 23,000 by gel filtration. The pH and temperature optima for the enzyme activity were 8.0 and 35°C, respectively. The penicillinase showed a unique substrate profile by hydrolyzing oxacillin about twice as rapidly as benzylpenicillin. The enzyme activity was weakly inhibited by sodium chloride but was not affected by p-chloromercuribenzoate. The property of penicillinase production by the A. hydrophila strain could not be transferred to Escherichia coli and also could not be eliminated from the bacteria by ethidium bromide treatment.
PMCID: PMC429718  PMID: 1049517
10.  Penicillinases of Klebsiella pneumoniae and Their Phylogenetic Relationship to Penicillinases Mediated by R Factors 
Journal of Bacteriology  1973;115(3):1045-1054.
On the assumption that the penicillinase determinants on a group of R factors conferring ampicillin resistance have a phylogenetically close relationship to the penicillinase gene of the Klebsiella group, the penicillinases from four strains of K. pneumoniae, GN69, GN1103R−, GN422, and GN118, were purified 230- to 1,000-fold and compared with the known two R-factor-mediated penicillinases. By gel filtration on Sephadex G-75, the molecular weights were estimated to be 17,400, 18,100, 20,000 and 18,300, respectively, which are slightly lower than those of the R-factor penicillinases. The isoelectric points of the Klebsiella penicillinases were not in agreement with those of the R-factor penicillinases. All the enzymes showed a pH optimum between 6.3 to 7.2 and a temperature optimum of 45 C, and those properties, together with behavior towards inhibitors, were about the same as those in the R-factor penicillinases. The substrate specificity and the Michaelis constants of the Klebsiella penicillinases for penicillins and cephaloridine were broadly similar to those of the R-factor penicillinases, however, some variations were found even among the four penicillinases of K. pneumoniae. The reactivities of the four penicillinases of K. pneumoniae with the antiserum against one R-factor penicillinase were tested, and three of the four Klebsiella penicillinases were found to be indistinguishable immunologically from both R-factor penicillinases. The remaining Klebsiella penicillinase, from GN1103R−, showed an immunological partial homology with the R-factor penicillinases.
PMCID: PMC246352  PMID: 4199503
11.  Variant of Penicillinase Mediated by an R Factor in Escherichia coli 
Journal of Bacteriology  1970;104(2):620-629.
The penicillinase from an Escherichia coli strain harboring an R factor RGN823 was purified and its properties were compared with those of a known type I penicillinase mediated by R factors. The molecular weight and S20,w of the enzyme were 22,600 and 2.42S, respectively. The isoelectric point of the enzyme was 6.9. These values are clearly different from those of type I penicillinase. The specific activity of the enzyme was 84,700 units per mg of the purified enzyme protein, which is about 20 times higher than that of the type I penicillinase. However, similarities were observed between the enzyme and the type I-penicillinase at optimal pH (6.5 to 7.0), optimal temperature (40 to 45C), substrate specificity, Michaelis constants for penicillins and cephaloridine, and effect of inhibitors. Furthermore, antiserum against type I penicillinase showed cross-reaction against this enzyme. The enzyme was named type Ib penicillinase, and the original type I penicillinase was renamed type Ia-penicillinase.
PMCID: PMC285036  PMID: 4923065

Results 1-11 (11)