PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Type II Topoisomerase Mutations in Ciprofloxacin-Resistant Strains of Pseudomonas aeruginosa 
We determined the sequences of the quinolone resistance-determining regions of gyrA, gyrB, and parC genes for 30 clinical strains of Pseudomonas aeruginosa resistant to ciprofloxacin that were previously complemented by wild-type gyrA and gyrB plasmid-borne alleles and studied for their coresistance to imipenem (E. Cambau, E. Perani, C. Dib, C. Petinon, J. Trias, and V. Jarlier, Antimicrob. Agents Chemother. 39:2248–2252, 1995). In the present study, we found mutations in type II topoisomerase genes for all strains. Twenty-eight strains had a missense mutation in gyrA (codon 83 or 87). Ten of them had an additional mutation in parC (codon 80 or 84), including a novel mutation of Ser-80 to Trp, but all were fully complemented by a plasmid-borne wild-type gyrA allele. The remaining two strains harbored the first gyrB mutation described in P. aeruginosa, leading to the substitution of phenylalanine for serine 464. The strains which had two mutations in type II topoisomerase genes (i.e., gyrA and parC) were significantly more resistant to fluoroquinolones than those with a single mutation in gyrA or gyrB (geometric mean MICs of ciprofloxacin, 39.4 versus 10.9 μg/ml, P < 0.01; geometric mean MICs of sparfloxacin, 64.0 versus 22.6, P < 0.01). No mutant with a parC mutation alone was observed, which favors DNA gyrase being the primary target for fluoroquinolones. These results demonstrate that gyrA mutations are the major mechanism of resistance to fluoroquinolones for clinical strains of P. aeruginosa and that additional mutations in parC lead to a higher level of quinolone resistance.
PMCID: PMC89021  PMID: 9869566

Results 1-1 (1)