PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Lipopolysaccharide-Deficient Acinetobacter baumannii Shows Altered Signaling through Host Toll-Like Receptors and Increased Susceptibility to the Host Antimicrobial Peptide LL-37 
Infection and Immunity  2013;81(3):684-689.
Infections caused by multidrug-resistant Acinetobacter baumannii have emerged as a serious global health problem. We have shown previously that A. baumannii can become resistant to the last-line antibiotic colistin via the loss of lipopolysaccharide (LPS), including the lipid A anchor, from the outer membrane (J. H. Moffatt, M. Harper, P. Harrison, J. D. Hale, E. Vinogradov, T. Seemann, R. Henry, B. Crane, F. St. Michael, A. D. Cox, B. Adler, R. L. Nation, J. Li, and J. D. Boyce, Antimicrob. Agents Chemother. 54:4971–4977, 2010). Here, we show how these LPS-deficient bacteria interact with components of the host innate immune system. LPS-deficient A. baumannii stimulated 2- to 4-fold lower levels of NF-κB activation and tumor necrosis factor alpha (TNF-α) secretion from immortalized murine macrophages, but it still elicited low levels of TNF-α secretion via a Toll-like receptor 2-dependent mechanism. Furthermore, we show that while LPS-deficient A. baumannii was not altered in its resistance to human serum, it showed increased susceptibility to the human antimicrobial peptide LL-37. Thus, LPS-deficient, colistin-resistant A. baumannii shows significantly altered activation of the host innate immune inflammatory response.
doi:10.1128/IAI.01362-12
PMCID: PMC3584870  PMID: 23250952
2.  Colistin-Resistant, Lipopolysaccharide-Deficient Acinetobacter baumannii Responds to Lipopolysaccharide Loss through Increased Expression of Genes Involved in the Synthesis and Transport of Lipoproteins, Phospholipids, and Poly-β-1,6-N-Acetylglucosamine 
We recently demonstrated that colistin resistance in Acinetobacter baumannii can result from mutational inactivation of genes essential for lipid A biosynthesis (Moffatt JH, et al., Antimicrob. Agents Chemother. 54:4971–4977). Consequently, strains harboring these mutations are unable to produce the major Gram-negative bacterial surface component, lipopolysaccharide (LPS). To understand how A. baumannii compensates for the lack of LPS, we compared the transcriptional profile of the A. baumannii type strain ATCC 19606 to that of an isogenic, LPS-deficient, lpxA mutant strain. The analysis of the expression profiles indicated that the LPS-deficient strain showed increased expression of many genes involved in cell envelope and membrane biogenesis. In particular, upregulated genes included those involved in the Lol lipoprotein transport system and the Mla-retrograde phospholipid transport system. In addition, genes involved in the synthesis and transport of poly-β-1,6-N-acetylglucosamine (PNAG) also were upregulated, and a corresponding increase in PNAG production was observed. The LPS-deficient strain also exhibited the reduced expression of genes predicted to encode the fimbrial subunit FimA and a type VI secretion system (T6SS). The reduced expression of genes involved in T6SS correlated with the detection of the T6SS-effector protein AssC in culture supernatants of the A. baumannii wild-type strain but not in the LPS-deficient strain. Taken together, these data show that, in response to total LPS loss, A. baumannii alters the expression of critical transport and biosynthesis systems associated with modulating the composition and structure of the bacterial surface.
doi:10.1128/AAC.05191-11
PMCID: PMC3256090  PMID: 22024825
3.  Different surface charge of colistin-susceptible and -resistant Acinetobacter baumannii cells measured with zeta potential as a function of growth phase and colistin treatment 
Objectives
Electrostatic forces mediate the initial interaction between cationic colistin and Gram-negative bacterial cells. Lipopolysaccharide (LPS) loss mediates colistin resistance in some A. baumannii strains. Our aim was to determine the surface charge of colistin-susceptible and –resistant A. baumannii as a function of growth phase and in response to polymyxin treatment.
Methods
The zeta potential of A. baumannii ATCC 19606 and 10 clinical multidrug-resistant strains (MICs 0.5–2 mg/L) was assessed. Colistin-resistant derivatives (MIC >128 mg/L) of wild-type strains were selected in the presence of 10 mg/L colistin, including the LPS-deficient lpxA mutant, ATCC 19606R. To determine the contribution of LPS to surface charge, two complemented ATCC 19606R derivatives were examined, namely ATCC 19606R + lpxA (containing an intact lpxA gene) and ATCC 19606R + V (containing empty vector). Investigations were conducted as a function of growth phase and polymyxin treatment (1, 4 and 8 mg/L).
Results
Wild-type cells exhibited a greater negative charge (−60.5 ± 2.36 to −26.2 ± 2.56 mV) thancolistin-resistant cells (−49.2 ± 3.09 to −19.1 ± 2.80 mV) at mid-log phase (ANOVA, P < 0.05). Opposing growth-phase trends were observed for both phenotypes: wild-type cells displayed reduced negative charge and colistin-resistant cells displayed increased negative charge at stationary compared with mid-logarithmic phase. Polymyxin exposure resulted in a concentration-dependent increase in zeta potential. Examination of ATCC 19606R and complemented strains supported the importance of LPS in determining surface charge, suggesting a potential mechanism of colistin resistance.
Conclusions
Zeta potential differences between A. baumannii phenotypes probably reflect compositional outer-membrane variations that impact the electrostatic component of colistin activity.
doi:10.1093/jac/dkq422
PMCID: PMC3001852  PMID: 21081544
physicochemical properties; Gram-negative; polymyxin
4.  Insertion Sequence ISAba11 Is Involved in Colistin Resistance and Loss of Lipopolysaccharide in Acinetobacter baumannii▿ 
Infections caused by Acinetobacter baumannii are of increasing concern, largely due to the multidrug resistance of many strains. Here we show that insertion sequence ISAba11 movement can result in inactivation of the A. baumannii lipid A biosynthesis genes lpxA and lpxC, resulting in the complete loss of lipopolysaccharide production and high-level colistin resistance.
doi:10.1128/AAC.01732-10
PMCID: PMC3101452  PMID: 21402838
5.  Colistin Resistance in Acinetobacter baumannii Is Mediated by Complete Loss of Lipopolysaccharide Production ▿  
Antimicrobial Agents and Chemotherapy  2010;54(12):4971-4977.
Infections caused by multidrug-resistant (MDR) Gram-negative bacteria represent a major global health problem. Polymyxin antibiotics such as colistin have resurfaced as effective last-resort antimicrobials for use against MDR Gram-negative pathogens, including Acinetobacter baumannii. Here we show that A. baumannii can rapidly develop resistance to polymyxin antibiotics by complete loss of the initial binding target, the lipid A component of lipopolysaccharide (LPS), which has long been considered to be essential for the viability of Gram-negative bacteria. We characterized 13 independent colistin-resistant derivatives of A. baumannii type strain ATCC 19606 and showed that all contained mutations within one of the first three genes of the lipid A biosynthesis pathway: lpxA, lpxC, and lpxD. All of these mutations resulted in the complete loss of LPS production. Furthermore, we showed that loss of LPS occurs in a colistin-resistant clinical isolate of A. baumannii. This is the first report of a spontaneously occurring, lipopolysaccharide-deficient, Gram-negative bacterium.
doi:10.1128/AAC.00834-10
PMCID: PMC2981238  PMID: 20855724

Results 1-5 (5)