Search tips
Search criteria

Results 1-19 (19)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  The Necessity of Having a Tetradentate Ligand to Extract Copper(II) Ions from Amyloids 
ChemistryOpen  2014;4(1):27-31.
The accumulation of redox-active metal ions, in particular copper, in amyloid plaques is considered to the cause of the intensive oxidation damage to the brain of patients with Alzheimers disease (AD). Drug candidates based on a bis(8-aminoquinoline) tetradentate ligand are able to efficiently extract Cu2+ from copper-loaded amyloids (Cu–Aβ). Contrarily, in the presence of a bidentate hydroxyquinoline, such as clioquinol, the copper is not released from Aβ, but remains sequestrated within a Aβ–Cu–clioquinol ternary complex that has been characterized by mass spectrometry. Facile extraction of copper(II) at a low amyloid/ligand ratio is essential for the re-introduction of copper in regular metal circulation in the brain. As, upon reduction, the Cu+ is easily released from the bis(8-aminoquinoline) ligand unable to accommodate CuI, it should be taken by proteins with an affinity for copper. So, the tetradentate bis(8-aminoquinoline) described here might act as a regulator of copper homeostasis.
PMCID: PMC4380950  PMID: 25861567
Alzheimers disease; chelating agents; copper homeostasis; medicinal chemistry; therapeutic agents
2.  Copper Chelator Induced Efficient Episodic Memory Recovery in a Non-Transgenic Alzheimer’s Mouse Model 
PLoS ONE  2012;7(8):e43105.
Alzheimer’s disease (AD) is a neurodegenerative syndrom involving many different biological parameters, including the accumulation of copper metal ions in Aβ amyloid peptides due to a perturbation of copper circulation and homeostasis within the brain. Copper-containing amyloids activated by endogenous reductants are able to generate an oxidative stress that is involved in the toxicity of abnormal amyloids and contribute to the progressive loss of neurons in AD. Since only few drugs are currently available for the treatment of AD, we decided to design small molecules able to interact with copper and we evaluated these drug-candidates with non-transgenic mice, since AD is mainly an aging disease, not related to genetic disorders. We created a memory deficit mouse model by a single icv injection of Aβ1–42 peptide, in order to mimic the early stage of the disease and the key role of amyloid oligomers in AD. No memory deficit was observed in the control mice with the antisense Aβ42-1 peptide. Here we report the capacity of a new copper-specific chelating agent, a bis-8-aminoquinoline PA1637, to fully reverse the deficit of episodic memory after three weeks of treatment by oral route on non-transgenic amyloid-impaired mice. Clioquinol and memantine have been used as comparators to validate this fast and efficient mouse model.
PMCID: PMC3424235  PMID: 22927947
3.  Evidence for the Contribution of the Hemozoin Synthesis Pathway of the Murine Plasmodium yoelii to the Resistance to Artemisinin-Related Drugs 
PLoS ONE  2012;7(3):e32620.
Plasmodium falciparum malaria is a major global health problem, causing approximately 780,000 deaths each year. In response to the spreading of P. falciparum drug resistance, WHO recommended in 2001 to use artemisinin derivatives in combination with a partner drug (called ACT) as first-line treatment for uncomplicated falciparum malaria, and most malaria-endemic countries have since changed their treatment policies accordingly. Currently, ACT are often the last treatments that can effectively and rapidly cure P. falciparum infections permitting to significantly decrease the mortality and the morbidity due to malaria. However, alarming signs of emerging resistance to artemisinin derivatives along the Thai-Cambodian border are of major concern. Through long-term in vivo pressures, we have been able to select a murine malaria model resistant to artemisinins. We demonstrated that the resistance of Plasmodium to artemisinin-based compounds depends on alterations of heme metabolism and on a loss of hemozoin formation linked to the down-expression of the recently identified Heme Detoxification Protein (HDP). These artemisinins resistant strains could be able to detoxify the free heme by an alternative catabolism pathway involving glutathione (GSH)-mediation. Finally, we confirmed that artemisinins act also like quinolines against Plasmodium via hemozoin production inhibition. The work proposed here described the mechanism of action of this class of molecules and the resistance to artemisinins of this model. These results should help both to reinforce the artemisinins activity and avoid emergence and spread of endoperoxides resistance by focusing in adequate drug partners design. Such considerations appear crucial in the current context of early artemisinin resistance in Asia.
PMCID: PMC3293827  PMID: 22403683
4.  Antischistosomal Activity of Trioxaquines: In Vivo Efficacy and Mechanism of Action on Schistosoma mansoni 
Schistosomiasis is among the most neglected tropical diseases, since its mode of spreading tends to limit the contamination to people who are in contact with contaminated waters in endemic countries. Here we report the in vitro and in vivo anti-schistosomal activities of trioxaquines. These hybrid molecules are highly active on the larval forms of the worms and exhibit different modes of action, not only the alkylation of heme. The synergy observed with praziquantel on infected mice is in favor of the development of these trioxaquines as potential anti-schistosomal agents.
Author Summary
Schistosomiasis is a tropical disease affecting more than 200 million people throughout the sub-tropical and tropical world. The treatment and control of schistosomiasis rely on the use of a single drug, the praziquantel and no vaccine is available. However, schistosome species with low sensitivity or resistance to praziquantel have been identified in several countries. It is an urgent need to develop new drugs against this parasite. In this context, our study reports the activity the trioxaquine PA1259. PA1259 is an hybrid drug containing two pharmacophores within a single molecule: a trioxane and an aminoquinoline. Initially developed against malaria, the trioxaquines target the heme a disposal product resulting from the digestion of the hemoglobin. The first action of the trioxaquine is an alkylation of the heme with the trioxane entity, and the second action is stacking with the heme due to the aminoquinoline moiety. In this study we show that this new drug is active in vitro against all schistosome stages (cercariae, schistosomule and adult). The PA1259 is also active in vivo and shows synergistic action in association with praziquantel. This opens the route to an efficient bitherapy of a highly neglected disease.
PMCID: PMC3279339  PMID: 22348155
5.  Trioxaquine PA1259 Alkylates Heme in the Blood-Feeding Parasite Schistosoma mansoni▿ 
Trioxaquine PA1259 is an efficient drug on larval- and adult-stage schistosomes, able to alkylate heme inside worms treated with it, leading to the formation of covalent heme-drug adducts. Such a mechanism, similar to one reported for other trioxaquines in Plasmodium, indicates that heme may be a common target of these trioxane-based drugs in different blood-feeding parasites.
PMCID: PMC3088258  PMID: 21300841
6.  Open versus laparoscopically-assisted oesophagectomy for cancer: a multicentre randomised controlled phase III trial - the MIRO trial 
BMC Cancer  2011;11:310.
Open transthoracic oesophagectomy is the standard treatment for infracarinal resectable oesophageal carcinomas, although it is associated with high mortality and morbidity rates of 2 to 10% and 30 to 50%, respectively, for both the abdominal and thoracic approaches. The worldwide popularity of laparoscopic techniques is based on promising results, including lower postoperative morbidity rates, which are related to the reduced postoperative trauma. We hypothesise that the laparoscopic abdominal approach (laparoscopic gastric mobilisation) in oesophageal cancer surgery will decrease the major postoperative complication rate due to the reduced surgical trauma.
The MIRO trial is an open, controlled, prospective, randomised multicentre phase III trial. Patients in study arm A will receive laparoscopic-assisted oesophagectomy, i.e., a transthoracic oesophagectomy with two-field lymphadenectomy and laparoscopic gastric mobilisation. Patients in study arm B will receive the same procedure, but with the conventional open abdominal approach. The primary objective of the study is to evaluate the major postoperative 30-day morbidity. Secondary objectives are to assess the overall 30-day morbidity, 30-day mortality, 30-day pulmonary morbidity, disease-free survival, overall survival as well as quality of life and to perform medico-economic analysis. A total of 200 patients will be enrolled, and two safety analyses will be performed using 25 and 50 patients included in arm A.
Postoperative morbidity remains high after oesophageal cancer surgery, especially due to major pulmonary complications, which are responsible for 50% of the postoperative deaths. This study represents the first randomised controlled phase III trial to evaluate the benefits of the minimally invasive approach with respect to the postoperative course and oncological outcomes in oesophageal cancer surgery.
Trial Registration
NCT00937456 (
PMCID: PMC3156811  PMID: 21781337
oesophageal cancer; surgery; minimally invasive surgery; oesophagectomy; randomised controlled trial
7.  In Vitro Activities of Trioxaquines against Schistosoma mansoni▿  
Antimicrobial Agents and Chemotherapy  2009;53(11):4903-4906.
We report the in vitro activities of trioxaquines against larval and adult-stage schistosomes at 5 and 50 μg/ml, respectively. Such activities are equivalent to that of praziquantel, the major and rather unique drug currently used for the treatment of schistosomiasis. In this range of concentrations, artemisinin derivatives (artesunate and artemether) have no activity.
PMCID: PMC2772302  PMID: 19596887
8.  The Antimalarial Trioxaquine DU1301 Alkylates Heme in Malaria-Infected Mice▿  
The in vivo alkylation of heme by the antimalarial trioxaquine DU1301 afforded covalent heme-drug adducts that were detected in the spleens of Plasmodium sp.-infected mice. This result indicates that the alkylation capacities of trioxaquines in mammals infected with Plasmodium strains are similar to that of artemisinin, a natural antimalarial trioxane-containing drug.
PMCID: PMC2493093  PMID: 18559651
9.  DNA cleavage and binding selectivity of a heterodinuclear Pt–Cu(3-Clip-Phen) complex 
The synthesis and nuclease activity of a new bifunctional heterodinuclear platinum–copper complex are reported. The design of this ditopic coordination compound is based on the specific mode of action of each component, namely, cisplatin and Cu(3-Clip-Phen), where 3-Clip-Phen is 1-(1,10-phenanthrolin-3-yloxy)-3-(1,10-phenanthrolin-8-yloxy)propan-2-amine. Cisplatin is not only able to direct the Cu(3-Clip-Phen) part to the GG or AG site, but also acts as a kinetically inert DNA anchor. The nuclease activity of this complex has been investigated on supercoiled DNA. The dinuclear compound is not only more active than Cu(3-Clip-Phen), but is also capable of inducing direct double-strand breaks. The sequence selectivity of the mononuclear platinum complex has been investigated by primer extension experiments, which reveal that its interaction with DNA occurs at the same sites as for cisplatin. The Taq polymerase recognizes the resulting DNA damage as different from that for unmodified cisplatin. The sequence-selective cleavage has been investigated by high-resolution gel electrophoresis on a 36-bp DNA fragment. Sequence-selective cleavages are observed in the close proximity of the platinum sites for the strand exhibiting the preferential platinum binding sites. The platinum moiety also coordinates to the other DNA strand, most likely leading only to mono guanine or adenine adducts.
Electronic supplementary material
The online version of this article (doi:10.1007/s00775-008-0346-y) contains supplementary material, which is available to authorized users.
PMCID: PMC2359831  PMID: 18270754
Platinum; Copper; Heterodinuclear; DNA; Ditopic
10.  Trioxaquines and Heme-Artemisinin Adducts Inhibit the In Vitro Formation of Hemozoin Better than Chloroquine▿  
Antimicrobial Agents and Chemotherapy  2007;51(10):3768-3770.
Trioxaquines, potential antimalarial agents, and heme-artemisinin adducts, resulting from the alkylation of heme by artemisinin, were evaluated as inhibitors of β-hematin formation in 10 M acetate medium at pH 5.
PMCID: PMC2043280  PMID: 17698628
11.  Trioxaquines Are New Antimalarial Agents Active on All Erythrocytic Forms, Including Gametocytes▿  
Malaria is the third most significant cause of infectious disease in the world. The search for new antimalarial chemotherapy has become increasingly urgent due to parasite resistance to classical drugs. Trioxaquines are synthetic hybrid molecules containing a trioxane motif (which is responsible for the antimalarial activity of artemisinin) linked to an aminoquinoline entity (which is responsible for the antiplasmodial properties of chloroquine). These trioxaquines are highly potent against young erythrocytic stages of Plasmodium falciparum and exhibit efficient activity in vitro against chloroquine-sensitive and -resistant strains of P. falciparum (50% inhibitory concentration, 4 to 32 nM) and are also active in vivo against P. vinckei petteri and P. yoelii nigeriensis in suppressive and curative murine tests. The trioxaquine DU1302 is one of these promising antimalarial agents. The present study confirms the absence of toxicity of this drug on cell lines and in a mice model. Moreover, DU1302 exhibits potent activity against gametocytes, the form transmitted by mosquitoes, as killing of the gametocytes is essential to limit the spread of malaria. The ease of chemical synthesis of this trioxaquine prototype should be considered an additional advantage and would make these drugs affordable without perturbations of the drug supply.
PMCID: PMC1855510  PMID: 17242150
12.  Mechanistic studies on DNA damage by minor groove binding copper–phenanthroline conjugates 
Nucleic Acids Research  2005;33(16):5371-5379.
Copper–phenanthroline complexes oxidatively damage and cleave nucleic acids. Copper bis-phenanthroline and copper complexes of mono- and bis-phenanthroline conjugates are used as research tools for studying nucleic acid structure and binding interactions. The mechanism of DNA oxidation and cleavage by these complexes was examined using two copper–phenanthroline conjugates of the sequence-specific binding molecule, distamycin. The complexes contained either one or two phenanthroline units that were bonded to the DNA-binding domain through a linker via the 3-position of the copper ligand. A duplex containing independently generated 2-deoxyribonolactone facilitated kinetic analysis of DNA cleavage. Oxidation rate constants were highly dependent upon the ligand environment but rate constants describing elimination of the alkali-labile 2-deoxyribonolactone intermediate were not. Rate constants describing DNA cleavage induced by each molecule were 11–54 times larger than the respective oxidation rate constants. The experiments indicate that DNA cleavage resulting from β-elimination of 2-deoxyribonolactone by copper–phenanthroline complexes is a general mechanism utilized by this family of molecules. In addition, the experiments confirm that DNA damage mediated by mono- and bis-phenanthroline copper complexes proceeds through distinct species, albeit with similar outcomes.
PMCID: PMC1235636  PMID: 16186134
13.  Dendrimeric coating of glass slides for sensitive DNA microarrays analysis 
Nucleic Acids Research  2003;31(16):e88.
Successful use and reliability of microarray technology is highly dependent on several factors, including surface chemistry parameters and accessibility of cDNA targets to the DNA probes fixed onto the surface. Here, we show that functionalisation of glass slides with homemade dendrimers allow production of more sensitive and reliable DNA microarrays. The dendrimers are nanometric structures of size-controlled diameter with aldehyde function at their periphery. Covalent attachment of these spherical reactive chemical structures on amino-silanised glass slides generates a reactive ∼100 Å layer onto which amino-modified DNA probes are covalently bound. This new grafting chemistry leads to the formation of uniform and homogenous spots. More over, probe concentration before spotting could be reduced from 0.2 to 0.02 mg/ml with PCR products and from 20 to 5 µM with 70mer oligonucleotides without affecting signal intensities after hybridisation with Cy3- and Cy5-labelled targets. More interestingly, while the binding capacity of captured probes on dendrimer-activated glass surface (named dendrislides) is roughly similar to other functionalised glass slides from commercial sources, detection sensitivity was 2-fold higher than with other available DNA microarrays. This detection limit was estimated to 0.1 pM of cDNA targets. Altogether, these features make dendrimer-activated slides ideal for manufacturing cost-effective DNA arrays applicable for gene expression and detection of mutations.
PMCID: PMC169980  PMID: 12907740
14.  Mn(III) Pyrophosphate as an Efficient Tool for Studying the Mode of Action of Isoniazid on the InhA Protein of Mycobacterium tuberculosis 
The antituberculosis drug isoniazid (INH) is quickly oxidized by stoichiometric amounts of manganese(III) pyrophosphate. In the presence of nicotinamide coenzymes (NAD+, NADH, nicotinamide mononucleotide [NMN+]) and nicotinic acid adenine dinucleotide (DNAD+), INH oxidation produced the formation of INH-coenzyme adducts in addition to known biologically inactive products (isonicotinic acid, isonicotinamide, and isonicotinaldehyde). A pool of INH-NAD(H) adducts preformed in solution allowed the rapid and strong inhibition of in vitro activity of the enoyl-acyl carrier protein reductase InhA, an INH target in the biosynthetic pathway of mycolic acids: the inhibition was 90 or 60% when the adducts were formed in the presence of NAD+ or NADH, respectively. Under similar conditions, no inhibitory activity of INH-NMN(H) and INH-DNAD(H) adducts was detected. When an isolated pool of 100 nM INH-NAD(H) adducts was first incubated with InhA, the enzyme activity was inhibited by 80%; when present in excess, both NADH and decenoyl-coenzyme A are able to prevent this phenomenon. InhA inhibition by several types of INH-coenzyme adducts coexisting in solution is discussed in relation with the structure of the coenzyme, the stereochemistry of the adducts, and their existence as both open and cyclic forms. Thus, manganese(III) pyrophosphate appears to be an efficient and convenient alternative oxidant to mimic the activity of the Mycobacterium tuberculosis KatG catalase-peroxidase and will be useful for further mechanistic studies of INH activation and for structural investigations of reactive INH species in order to promote the design of new inhibitors of InhA as potential antituberculous drugs.
PMCID: PMC127317  PMID: 12069966
15.  In Vitro Activities of DU-1102, a New Trioxaquine Derivative, against Plasmodium falciparum Isolates 
The antimalarial trioxaquine derivative DU-1102, synthesized by covalent linkage between aminoquinoline and trioxane moieties, was highly active against Cameroonian isolates (mean 50% inhibitory concentration of 43 nmol/liter) of Plasmodium falciparum. There was no correlation between the responses to DU-1102 and chloroquine and only a low correlation between the responses to DU-1102 and pyrimethamine, suggesting an independent mode of action of the trioxaquine against the parasites.
PMCID: PMC90564  PMID: 11353644
16.  Guanine Oxidation in Double-stranded DNA by MnTMPyP/KHSO5: At Least Three Independent Reaction Pathways 
Metal-Based Drugs  2001;8(1):47-56.
In order to better define the mechanism and the products of guanine oxidation within DNA, we investigated the details of the mechanism of guanine oxidation by a metalloporphyrin, Mn-TMPyP, associated to KHSO5 on oligonucleotides. We found that the three major products of guanine oxidation are formed by independent reaction routes. The oxidized guanidinohydantoin (1) and the proposed spiro compound 3 derivatives are not precursors of imidazolone lesion (Iz). These guanine lesions as well as their degradation products, may account for non-detected guanine oxidation products on oxidatively damaged DNA.
PMCID: PMC2365246  PMID: 18475975
17.  Mechanisms of DNA cleavage by copper complexes of 3-Clip-Phen and of its conjugate with a distamycin analogue 
Nucleic Acids Research  2000;28(24):4856-4864.
Mechanisms of DNA oxidation by copper complexes of 3-Clip-Phen and its conjugate with a distamycin analogue, in the presence of a reductant and air, were studied. Characterisation of the production of 5-methylenefuranone (5-MF) and furfural, associated with the release of nucleobases, indicated that these copper complexes oxidised the C1′ and C5′ positions of 2-deoxyribose, respectively, which are accessible from the DNA minor groove. Oxidation at C1′ was the major degradation route. Digestion of DNA oxidation products by P1 nuclease and bacterial alkaline phosphatase allowed characterisation of glycolic acid residues, indicating that these copper complexes also induced C4′ oxidation. However, this pathway was not associated with base propenal release. The ability of the copper complex of the 3-Clip-Phen conjugate with the distamycin analogue to produce sequence-selective DNA cleavage allowed confirmation of these mechanisms of DNA oxidation by PAGE. Comparison of DNA cleavage activity showed that conjugation of 3-Clip-Phen with a DNA minor groove binder, like the distamycin analogue, decreased both its ability to perform C1′ oxidation as well as the initial rate of the reaction, but this conjugate is still active after 5 h at 37°C, making it an efficient DNA cleaver.
PMCID: PMC115237  PMID: 11121476
18.  In Vitro and In Vivo Potentiation of Artemisinin and Synthetic Endoperoxide Antimalarial Drugs by Metalloporphyrins 
Antimicrobial Agents and Chemotherapy  2000;44(10):2836-2841.
The in vitro potentiation of artemisinin by synthetic manganese porphyrin complexes has been recently reported (F. Benoit-Vical, A. Robert, and B. Meunier, Antimicrob. Agents Chemother. 43:2555–2558, 1999). Since the activity of artemisinin and synthetic antimalarial endoperoxides is related to their interaction with heme (S. R. Meshnick, A. Thomas, A. Ranz, C. M. Xu, and H. Z. Pan, Mol. Biochem. Parasitol. 49:181–190, 1991), an improvement of their efficiency may be expected in the presence of a synthetic metalloporphyrin having the same activating role as endogenous heme. With the aim to boost the activity of antimalarial endoperoxide drugs, we were thus led to evaluate the in vitro and in vivo potentiation of natural and synthetic drugs of this family by a nontoxic and cheap metalloporphyrin. The potentiation of artemisinin, β-artemether, and arteflene (Ro 42-1611) by synthetic heme models is reported. In vitro studies on the chloroquine-resistant Plasmodium falciparum FcB1-Columbia strain indicate a synergistic effect of the manganese complex of meso-tetrakis(4-sulfonatophenylporphyrin) (Mn-TPPS) on the activity of artemisinin or β-artemether, whereas this heme model has no influence on the activity of arteflene. A significant synergistic effect on rodent malaria was also observed in vivo between artemisinin and Mn-TPPS using Plasmodium vinckei petteri strain.
PMCID: PMC90158  PMID: 10991867
19.  Potentiation of Artemisinin Activity against Chloroquine-Resistant Plasmodium falciparum Strains by Using Heme Models 
Antimicrobial Agents and Chemotherapy  1999;43(10):2555-2558.
The influence of different metalloporphyrin derivatives on the antimalarial activity of artemisinin was studied with two chloroquine-resistant strains of Plasmodium falciparum (FcB1-Colombia and FcM29-Cameroon) cultured in human erythrocytes. This potentiation study indicates that the manganese complex of meso-tetrakis(4-sulfonatophenyl)porphyrin has a significant synergistic effect on the activity of artemisinin against both Plasmodium strains.
PMCID: PMC89520  PMID: 10508044

Results 1-19 (19)