Search tips
Search criteria

Results 1-22 (22)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Repeatability of Feather Mite Prevalence and Intensity in Passerine Birds 
PLoS ONE  2014;9(9):e107341.
Understanding why host species differ so much in symbiont loads and how this depends on ecological host and symbiont traits is a major issue in the ecology of symbiosis. A first step in this inquiry is to know whether observed differences among host species are species-specific traits or more related with host-symbiont environmental conditions. Here we analysed the repeatability (R) of the intensity and the prevalence of feather mites to partition within- and among-host species variance components. We compiled the largest dataset so far available: 119 Paleartic passerine bird species, 75,944 individual birds, ca. 1.8 million mites, seven countries, 23 study years. Several analyses and approaches were made to estimate R and adjusted repeatability (Radj) after controlling for potential confounding factors (breeding period, weather, habitat, spatial autocorrelation and researcher identity). The prevalence of feather mites was moderately repeatable (R = 0.26–0.53; Radj = 0.32–0.57); smaller values were found for intensity (R = 0.19–0.30; Radj = 0.18–0.30). These moderate repeatabilities show that prevalence and intensity of feather mites differ among species, but also that the high variation within species leads to considerable overlap among bird species. Differences in the prevalence and intensity of feather mites within bird species were small among habitats, suggesting that local factors are playing a secondary role. However, effects of local climatic conditions were partially observed for intensity.
PMCID: PMC4162594  PMID: 25216248
2.  Interkingdom signaling and its consequences for human health 
Virulence  2014;5(2):243-244.
PMCID: PMC3956499  PMID: 24503955
Pseudomonas aeruginosa; quorum sensing; immune response; stem cells; PQS; homoserine lactone; signaling
3.  The Inactivation of Intrinsic Antibiotic Resistance Determinants Widens the Mutant Selection Window for Quinolones in Stenotrophomonas maltophilia 
Antimicrobial Agents and Chemotherapy  2012;56(12):6397-6399.
We have determined that the mutational inactivation of the SmeDEF efflux pump and the SmQnr quinolone resistance protein widens the mutant selection windows for ofloxacin and ciprofloxacin of Stenotrophomonas maltophilia by reducing their MICs. Resistant mutants arising from a strain lacking SmeDEF and SmQnr presented levels of susceptibility similar to those of the wild-type strain. This indicates that inactivation of intrinsic resistance determinants might increase the chances for selecting resistant mutants at low antibiotic concentrations.
PMCID: PMC3497180  PMID: 23006759
4.  RND multidrug efflux pumps: what are they good for? 
Multidrug efflux pumps are chromosomally encoded genetic elements capable of mediating resistance to toxic compounds in several life forms. In bacteria, these elements are involved in intrinsic and acquired resistance to antibiotics. Unlike other well-known horizontally acquired antibiotic resistance determinants, genes encoding for multidrug efflux pumps belong to the core of bacterial genomes and thus have evolved over millions of years. The selective pressure stemming from the use of antibiotics to treat bacterial infections is relatively recent in evolutionary terms. Therefore, it is unlikely that these elements have evolved in response to antibiotics. In the last years, several studies have identified numerous functions for efflux pumps that go beyond antibiotic extrusion. In this review we present some examples of these functions that range from bacterial interactions with plant or animal hosts, to the detoxification of metabolic intermediates or the maintenance of cellular homeostasis.
PMCID: PMC3564043  PMID: 23386844
multidrug efflux pumps; host/bacteria interactions; plant/bacteria interactions; quorum sensing; antibiotic resistance; bacterial homeostasis; bacterial virulence
5.  Whole-Genome Sequence of Stenotrophomonas maltophilia D457, a Clinical Isolate and a Model Strain 
Journal of Bacteriology  2012;194(13):3563-3564.
Stenotrophomonas maltophilia is an opportunistic pathogen with an environmental origin, and it is an increasingly relevant cause of nosocomial infections. Here we present the whole-genome sequence of S. maltophilia strain D457, a clinical isolate that is being used as a model for studying antibiotic resistance in this bacterial species.
PMCID: PMC3434719  PMID: 22689246
6.  Bottlenecks in the Transferability of Antibiotic Resistance from Natural Ecosystems to Human Bacterial Pathogens 
It is generally accepted that resistance genes acquired by human pathogens through horizontal gene transfer originated in environmental, non-pathogenic bacteria. As a consequence, there is increasing concern on the roles that natural, non-clinical ecosystems, may play in the evolution of resistance. Recent studies have shown that the variability of determinants that can provide antibiotic resistance on their expression in a heterologous host is much larger than what is actually found in human pathogens, which implies the existence of bottlenecks modulating the transfer, spread, and stability of antibiotic resistance genes. In this review, the role that different factors such as founder effects, ecological connectivity, fitness costs, or second-order selection may have on the establishment of a specific resistance determinant in a population of bacterial pathogens is analyzed.
PMCID: PMC3249888  PMID: 22319513
horizontal gene transfer; antibiotic resistance; founder effect; fitness costs; genetic exchange community; second-order selection
7.  Quinolone Resistance: Much More than Predicted 
Since quinolones are synthetic antibiotics, it was predicted that mutations in target genes would be the only mechanism through which resistance could be acquired, because there will not be quinolone-resistance genes in nature. Contrary to this prediction, a variety of elements ranging from efflux pumps, target-protecting proteins, and even quinolone-modifying enzymes have been shown to contribute to quinolone resistance. The finding of some of these elements in plasmids indicates that quinolone resistance can be transferable. As a result, there has been a developing interest on the reservoirs for quinolone-resistance genes and on the potential risks associated with the use of these antibiotics in non-clinical environments. As a matter of fact, plasmid-encoded, quinolone-resistance qnr genes originated in the chromosome of aquatic bacteria. Thus the use of quinolones in fish-farming might constitute a risk for the emergence of resistance. Failure to predict the development of quinolone resistance reinforces the need of taking into consideration the wide plasticity of biological systems for future predictions. This plasticity allows pathogens to deal with toxic compounds, including those with a synthetic origin as quinolones.
PMCID: PMC3109427  PMID: 21687414
quinolone resistance; qnr; MDR efflux pump; quinolone inactivation; transfer of quinolone resistance
8.  Different Expression Systems for Production of Recombinant Proteins in Saccharomyces cerevisiae 
Biotechnology and bioengineering  2012;109(5):1259-1268.
Yeast Saccharomyces cerevisiae has become an attractive cell factory for production of commodity and speciality chemicals and proteins, such as industrial enzymes and pharmaceutical proteins. Here we evaluate most important expression factors for recombinant protein secretion: we chose two different proteins (insulin precursor (IP) and α-amylase), two different expression vectors (POTud plasmid and CPOTud plasmid) and two kinds of leader sequences (the glycosylated alpha factor leader and a synthetic leader with no glycosylation sites). We used IP and α-amylase as representatives of a simple protein and a multi-domain protein, as well as a non-glycosylated protein and a glycosylated protein, respectively. The genes coding for the two recombinant proteins were fused independently with two different leader sequences and were expressed using two different plasmid systems, resulting in eight different strains that were evaluated by batch fermentations. The secretion level (μmol/L) of IP was found to be higher than that of α-amylase for all expression systems and we also found larger variation in IP production for the different vectors. We also found that there is a change in protein production kinetics during the diauxic shift, i.e. the IP was produced at higher rate during the glucose uptake phase, whereas amylase was produced at a higher rate in the ethanol uptake phase. For comparison, we also refer to data from another study, in which we used the p426GPD plasmid (standard vector using URA3 as marker gene and pGPD1 as expression promoter, (Tyo KEJ, et al. Submitted)). For the IP there is more than 10 fold higher protein production with the CPOTud vector compared with the standard URA3-based vector, and this vector system therefore represent a valuable resource for future studies and optimization of recombinant protein production in yeast.
PMCID: PMC4128558  PMID: 22179756
α-amylase; Insulin precursor; Expression systems; Leader sequence; Secretory pathway; Saccharomyces cerevisiae
9.  Short-sighted evolution of bacterial opportunistic pathogens with an environmental origin 
PMCID: PMC4033005  PMID: 24904552
opportunistic pathogen; Pseudomonas aeruginosa; cystic fibrosis; chronic infection; bacterial evolution
10.  Differential Epigenetic Compatibility of qnr Antibiotic Resistance Determinants with the Chromosome of Escherichia coli 
PLoS ONE  2012;7(5):e35149.
Environmental bacteria harbor a plethora of genes that, upon their horizontal transfer to new hosts, may confer resistance to antibiotics, although the number of such determinants actually acquired by pathogenic bacteria is very low. The founder effect, fitness costs and ecological connectivity all influence the chances of resistance transfer being successful. We examined the importance of these bottlenecks using the family of quinolone resistance determinants Qnr. The results indicate the epigenetic compatibility of a determinant with the host genome to be of great importance in the acquisition and spread of resistance. A plasmid carrying the widely distributed QnrA determinant was stable in Escherichia coli, whereas the SmQnr determinant was unstable despite both proteins having very similar tertiary structures. This indicates that the fitness costs associated with the acquisition of antibiotic resistance may not derive from a non-specific metabolic burden, but from the acquired gene causing specific changes in bacterial metabolic and regulatory networks. The observed stabilization of the plasmid encoding SmQnr by chromosomal mutations, including a mutant lacking the global regulator H-NS, reinforces this idea. Since quinolones are synthetic antibiotics, and since the origin of QnrA is the environmental bacterium Shewanella algae, the role of QnrA in this organism is unlikely to be that of conferring resistance. Its evolution toward this may have occurred through mutations or because of an environmental change (exaptation). The present results indicate that the chromosomally encoded Qnr determinants of S. algae can confer quinolone resistance upon their transfer to E. coli without the need of any further mutation. These results suggest that exaptation is important in the evolution of antibiotic resistance.
PMCID: PMC3344834  PMID: 22574114
12.  The Binding of Triclosan to SmeT, the Repressor of the Multidrug Efflux Pump SmeDEF, Induces Antibiotic Resistance in Stenotrophomonas maltophilia 
PLoS Pathogens  2011;7(6):e1002103.
The wide utilization of biocides poses a concern on the impact of these compounds on natural bacterial populations. Furthermore, it has been demonstrated that biocides can select, at least in laboratory experiments, antibiotic resistant bacteria. This situation has raised concerns, not just on scientists and clinicians, but also on regulatory agencies, which are demanding studies on the impact that the utilization of biocides may have on the development on resistance and consequently on the treatment of infectious diseases and on human health. In the present article, we explored the possibility that the widely used biocide triclosan might induce antibiotic resistance using as a model the opportunistic pathogen Stenotrophomonas maltophilia. Biochemical, functional and structural studies were performed, focusing on SmeDEF, the most relevant antibiotic- and triclosan-removing multidrug efflux pump of S. maltophilia. Expression of smeDEF is regulated by the repressor SmeT. Triclosan released SmeT from its operator and induces the expression of smeDEF, thus reducing the susceptibility of S. maltophilia to antibiotics in the presence of the biocide. The structure of SmeT bound to triclosan is described. Two molecules of triclosan were found to bind to one subunit of the SmeT homodimer. The binding of the biocide stabilizes the N terminal domain of both subunits in a conformation unable to bind DNA. To our knowledge this is the first crystal structure obtained for a transcriptional regulator bound to triclosan. This work provides the molecular basis for understanding the mechanisms allowing the induction of phenotypic resistance to antibiotics by triclosan.
Author Summary
The wide utilization of biocides for different purposes, including toothpastes, soaps, house-hold compounds surfaces' disinfectants and even their use as additives of different materials (from textiles to concrete used in germ-free buildings) to avoid their colonization by microorganisms, poses a concern on the impact of these compounds on natural bacterial populations. Furthermore, it has been demonstrated that such biocides can select, at least in laboratory experiments, bacteria resistant to antibiotics. This situation has raised concerns on the impact that the utilization of biocides may have on the development on resistance and consequently on the treatment of infectious diseases. In the present article we study whether biocides can induce phenotypic resistance to antibiotics, a process that would be barely detectable unless purposely searched out. In the article, we present functional, biochemical and structural data showing that the widely used biocide triclosan induces antibiotic resistance, mediated by the binding of the biocide to SmeT, the transcriptional regulator of the expression of the Stenotrophomonas maltophilia multidrug efflux pump SmeDEF, which can extrude an ample range of antibiotics. Our study provides an unambiguous link between the presence of this biocide and the increased efflux of antibiotics by the opportunistic pathogen S. maltophilia.
PMCID: PMC3128119  PMID: 21738470
13.  Examination of two lowland rice cultivars reveals that gibberellin-dependent early response to submergence is not necessarily mediated by ethylene 
Plant Signaling & Behavior  2011;6(1):134-136.
Using two lowland rice (Oryza sativa L.) cultivars we found that in both cases submerged-induced elongation early after germination depends on gibberellins (GAs). Submergence increases the content of the active GA1 by enhancing the expression of GA biosynthesis genes, thus facilitating the seedlings to escape from the water and preventing asphyxiation. However, the two cultivars differ in their response to ethylene. The cultivar Senia (short), by contrast to cultivar Bomba (tall), does not elongate after ethylene application, and submerged-induced elongation is not negated by an inhibitor of ethylene perception. Also, while ethylene emanation in Senia is not altered by submergence, Bomba seedlings emanate more ethylene upon desubmergence, associated with enhanced expression of the ethylene biosynthesis gene OsACS5. The cultivar Senia thus allows the possibility of clarifying the role of ethylene and other factors as triggers of GA biosynthesis enhancement in rice seedlings under submergence.
PMCID: PMC3122026  PMID: 21224726
gibberellins; ethylene; submergence; lowland rice; Oryza sativa
14.  The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development 
Journal of Experimental Botany  2010;62(2):617-626.
Transgenic tomato plants (Solanum lycopersicum L.) with reduced mRNA levels of AUXIN RESPONSE FACTOR 7 (SlARF7) form parthenocarpic fruits with morphological characteristics that seem to be the result of both increased auxin and gibberellin (GA) responses during fruit growth. This paper presents a more detailed analysis of these transgenic lines. Gene expression analysis of auxin-responsive genes show that SlARF7 may regulate only part of the auxin signalling pathway involved in tomato fruit set and development. Also, part of the GA signalling pathway was affected by the reduced levels of SlARF7 mRNA, as morphological and molecular analyses display similarities between GA-induced fruits and fruits formed by the RNAi SlARF7 lines. Nevertheless, the levels of GAs were strongly reduced compared with that in seeded fruits. These findings indicate that SlARF7 acts as a modifier of both auxin and gibberellin responses during tomato fruit set and development.
PMCID: PMC3003806  PMID: 20937732
AUXIN RESPONSE FACTOR; fruit development; gibberellin (GA); parthenocarpy; tomato
16.  Analysis of a novel calcium auxotrophy in Aspergillus nidulans 
Fungal Genetics and Biology  2010;47(7):647-655.
In Aspergillus nidulans a combination of null mutations in halA, encoding a protein kinase, and sltA, encoding a zinc-finger transcription factor having no yeast homologues, results in an elevated calcium requirement (‘calcium auxotrophy’) without impairing net calcium uptake. sltA− (±halA−) mutations result in hypertrophy of the vacuolar system. In halA−sltA− (and sltA−) strains, transcript levels for pmcA and pmcB, encoding vacuolar Ca2+-ATPase homologues, are highly elevated, suggesting a regulatory relationship between vacuolar membrane area and certain vacuolar membrane ATPase levels. Deletion of both pmcA and pmcB strongly suppresses the ‘calcium auxotrophy’. Therefore the ‘calcium auxotrophy’ possibly results from excessive vacuolar calcium sequestration, causing cytosolic calcium deprivation. Null mutations in nhaA, homologous to Saccharomyces cerevisiaeNHA1, encoding a plasma membrane Na+/H+ antiporter effluxing Na+ and K+, and a non-null mutation in trkB, homologous to S. cerevisiaeTRK1, encoding a plasma membrane high affinity K+ transporter, also suppress the calcium auxotrophy.
PMCID: PMC2884188  PMID: 20438880
Aspergillus; Calcium transport; Cation homeostasis; Ion pump; Vacuolation; Transcriptional regulation
17.  Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of a novel family of Qnr determinants 
BMC Microbiology  2008;8:148.
Predicting antibiotic resistance before it emerges at clinical settings constitutes a novel approach for preventing and fighting resistance of bacterial pathogens. To analyse the possibility that novel plasmid-encoded quinolone resistance determinants (Qnr) can emerge and disseminate among bacterial pathogens, we searched the presence of those elements in nearly 1000 bacterial genomes and metagenomes.
We have found a number of novel potential qnr genes in the chromosomes of aquatic bacteria and in metagenomes from marine organisms. Functional studies of the Stenotrophomonas maltophilia Smqnr gene show that plasmid-encoded SmQnr confers quinolone resistance upon its expression in a heterologous host.
Altogether, the data presented in our work support the notion that predictive studies on antibiotic resistance are feasible, using currently available information on bacterial genomes and with the aid of bioinformatic and functional tools. Our results confirm that aquatic bacteria can be the origin of plasmid-encoded Qnr, and highlight the potential role of S. maltophilia as a source of novel Qnr determinants.
PMCID: PMC2556341  PMID: 18793450
18.  The Neglected Intrinsic Resistome of Bacterial Pathogens 
PLoS ONE  2008;3(2):e1619.
Bacteria with intrinsic resistance to antibiotics are a worrisome health problem. It is widely believed that intrinsic antibiotic resistance of bacterial pathogens is mainly the consequence of cellular impermeability and activity of efflux pumps. However, the analysis of transposon-tagged Pseudomonas aeruginosa mutants presented in this article shows that this phenotype emerges from the action of numerous proteins from all functional categories. Mutations in some genes make P. aeruginosa more susceptible to antibiotics and thereby represent new targets. Mutations in other genes make P. aeruginosa more resistant and therefore define novel mechanisms for mutation-driven acquisition of antibiotic resistance, opening a new research field based in the prediction of resistance before it emerges in clinical environments. Antibiotics are not just weapons against bacterial competitors, but also natural signalling molecules. Our results demonstrate that antibiotic resistance genes are not merely protective shields and offer a more comprehensive view of the role of antibiotic resistance genes in the clinic and in nature.
PMCID: PMC2238818  PMID: 18286176
19.  Interactions among Strategies Associated with Bacterial Infection: Pathogenicity, Epidemicity, and Antibiotic Resistance†  
Clinical Microbiology Reviews  2002;15(4):647-679.
Infections have been the major cause of disease throughout the history of human populations. With the introduction of antibiotics, it was thought that this problem should disappear. However, bacteria have been able to evolve to become antibiotic resistant. Nowadays, a proficient pathogen must be virulent, epidemic, and resistant to antibiotics. Analysis of the interplay among these features of bacterial populations is needed to predict the future of infectious diseases. In this regard, we have reviewed the genetic linkage of antibiotic resistance and bacterial virulence in the same genetic determinants as well as the cross talk between antibiotic resistance and virulence regulatory circuits with the aim of understanding the effect of acquisition of resistance on bacterial virulence. We also discuss the possibility that antibiotic resistance and bacterial virulence might prevail as linked phenotypes in the future. The novel situation brought about by the worldwide use of antibiotics is undoubtedly changing bacterial populations. These changes might alter the properties of not only bacterial pathogens, but also the normal host microbiota. The evolutionary consequences of the release of antibiotics into the environment are largely unknown, but most probably restoration of the microbiota from the preantibiotic era is beyond our current abilities.
PMCID: PMC126860  PMID: 12364374
20.  Cloning and Characterization of SmeDEF, a Novel Multidrug Efflux Pump from Stenotrophomonas maltophilia 
Antimicrobial Agents and Chemotherapy  2000;44(11):3079-3086.
Stenotrophomonas maltophilia is a nosocomial bacterial pathogen intrinsically resistant to several antibiotics. The mechanisms involved in this intrinsic multiresistance phenotype are poorly understood. A library of chromosomal DNA from a spontaneous multidrug-resistant S. maltophilia D457R mutant (A. Alonso and J. L. Martinez, Antimicrob. Agents Chemother. 41:1140–1142, 1997) was screened for complementation of erythromycin susceptibility on an antibiotic-hypersusceptible Escherichia coli ΔacrAB strain. Cloning and further analysis revealed that a 6-kbp region constituting a transcriptional unit was capable of complementing the antibiotic-susceptible phenotype of an E. coli ΔacrAB strain. We identified three open reading frames, smeD, smeE and smeF, which code for members of the membrane fusion protein, resistance nodulation division, and outer membrane factor families, respectively. Drug susceptibility assays indicated that the SmeDEF system cloned in E. coli mediates resistance to a wide range of antibiotics. Ethidium bromide and norfloxacin accumulation experiments in the presence and in the absence of carbonyl cyanide m-chlorophenylhydrazone showed that this system constitutes a drug efflux pump dependent on the membrane proton motive force. The presence of high levels of smeDEF mRNA in the multiresistant D457R mutant was consistent with the high levels of SmeF (formerly Omp54) observed in the same strain. In contrast, transcription levels of smeDEF in the D457 strain were tiny, which correlates with the low levels of SmeF observed for this strain. Also, for both the D457 and D457R strains, we observed growth phase-dependent regulation in which the highest level of transcription corresponded to early exponential phase, with transcription decreasing throughout the growth curve to undetectable levels at 24 h.
PMCID: PMC101606  PMID: 11036026
21.  Stenotrophomonas maltophilia D457R Contains a Cluster of Genes from Gram-Positive Bacteria Involved in Antibiotic and Heavy Metal Resistance 
A cluster of genes involved in antibiotic and heavy metal resistance has been characterized from a clinical isolate of the gram-negative bacterium Stenotrophomonas maltophilia. These genes include a macrolide phosphotransferase (mphBM) and a cadmium efflux determinant (cadA), together with the gene cadC coding for its transcriptional regulator. The cadC cadA region is flanked by a truncated IS257 sequence and a region coding for a bin3 invertase. Despite their presence in a gram-negative bacterium, these genetic elements share a common gram-positive origin. The possible origin of these determinants as a remnant composite transposon as well as the role of gene transfer between gram-positive and gram-negative bacteria for the acquisition of antibiotic resistance determinants in chronic, mixed infections is discussed.
PMCID: PMC89961  PMID: 10858330
22.  Metal Accumulation and Vanadium-Induced Multidrug Resistance by Environmental Isolates of Escherichia hermannii and Enterobacter cloacae 
Applied and Environmental Microbiology  1998;64(11):4317-4320.
Contaminated soils from an oil refinery were screened for the presence of microorganisms capable of accumulating either nickel, vanadium, or both metals. Three strains of bacteria that belonged to the family Enterobacteriaceae were selected. Two of them were Escherichia hermannii strains, and outer membrane profile (OMP) analysis showed that they were similar to a strain of clinical origin; the other one was an Enterobacter cloacae strain that differed from clinical isolates. The selected bacteria accumulated both nickel and vanadium. Growth in the presence of vanadium induced multidrug resistance phenotypes in E. hermannii and E. cloacae. Incubation with this metal changed the OMP profile of E. hermannii but did not produce variations in the expression of the major OMPs of E. cloacae.
PMCID: PMC106645  PMID: 9797283

Results 1-22 (22)