PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (47)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
Document Types
1.  Evaluation of Imipenem for Prophylaxis and Therapy of Yersinia pestis Delivered by Aerosol in a Mouse Model of Pneumonic Plague 
It has been previously shown that mice subjected to an aerosol exposure to Yersinia pestis and treated with β-lactam antibiotics after a delay of 42 h died at an accelerated rate compared to controls. It was hypothesized that endotoxin release in antibiotic-treated mice accounted for the accelerated death rate in the mice exposed to aerosol Y. pestis. Imipenem, a β-lactam antibiotic, binds to penicillin binding protein 2 with the highest affinity and produces rounded cells. The binding of imipenem causes cells to lyse quickly and thereby to release less free endotoxin. Two imipenem regimens producing fractions of time that the concentration of free, unbound drug was above the MIC (fT>MIC) of approximately 25% (6/24 h) and 40% (9.5/24 h) were evaluated. In the postexposure prophylaxis study, the 40% and 25% regimens produced 90% and 40% survivorship, respectively. In the 42-h treatment study, both regimens demonstrated a 40 to 50% survivorship at therapy cessation and some deaths thereafter, resulting in a 30% survivorship. As this was an improvement over the results with other β-lactams, a comparison of both endotoxin and cytokine levels in mice treated with imipenem and ceftazidime (a β-lactam previously demonstrated to accelerate death in mice during treatment) was performed and supported the original hypotheses; however, the levels observed in animals treated with ciprofloxacin (included as an unrelated antibiotic that is also bactericidal but should cause little lysis due to a different mode of action) were elevated and significantly (7-fold) higher than those with ceftazidime.
doi:10.1128/AAC.02420-14
PMCID: PMC4068467  PMID: 24687492
2.  Analysis of Combination Drug Therapy to Develop Regimens with Shortened Duration of Treatment for Tuberculosis 
PLoS ONE  2014;9(7):e101311.
Rationale
Tuberculosis remains a worldwide problem, particularly with the advent of multi-drug resistance. Shortening therapy duration for Mycobacterium tuberculosis is a major goal, requiring generation of optimal kill rate and resistance-suppression. Combination therapy is required to attain the goal of shorter therapy.
Objectives
Our objective was to identify a method for identifying optimal combination chemotherapy. We developed a mathematical model for attaining this end. This is accomplished by identifying drug effect interaction (synergy, additivity, antagonism) for susceptible organisms and subpopulations resistant to each drug in the combination.
Methods
We studied the combination of linezolid plus rifampin in our hollow fiber infection model. We generated a fully parametric drug effect interaction mathematical model. The results were subjected to Monte Carlo simulation to extend the findings to a population of patients by accounting for between-patient variability in drug pharmacokinetics.
Results
All monotherapy allowed emergence of resistance over the first two weeks of the experiment. In combination, the interaction was additive for each population (susceptible and resistant). For a 600 mg/600 mg daily regimen of linezolid plus rifampin, we demonstrated that >50% of simulated subjects had eradicated the susceptible population by day 27 with the remaining organisms resistant to one or the other drug. Only 4% of patients had complete organism eradication by experiment end.
Discussion
These data strongly suggest that in order to achieve the goal of shortening therapy, the original regimen may need to be changed at one month to a regimen of two completely new agents with resistance mechanisms independent of the initial regimen. This hypothesis which arose from the analysis is immediately testable in a clinical trial.
doi:10.1371/journal.pone.0101311
PMCID: PMC4086932  PMID: 25003557
3.  Hollow-Fiber Pharmacodynamic Studies and Mathematical Modeling To Predict the Efficacy of Amoxicillin for Anthrax Postexposure Prophylaxis in Pregnant Women and Children 
Antimicrobial Agents and Chemotherapy  2013;57(12):5946-5960.
Amoxicillin is considered an option for postexposure prophylaxis of Bacillus anthracis in pregnant and postpartum women who are breastfeeding and in children because of the potential toxicities of ciprofloxacin and doxycycline to the fetus and child. The amoxicillin regimen that effectively kills B. anthracis and prevents resistance is unknown. Fourteen-day dose range and dose fractionation studies were conducted in in vitro pharmacodynamic models to identify the exposure intensity and pharmacodynamic index of amoxicillin that are linked with optimized killing of B. anthracis and resistance prevention. Studies with dicloxacillin, a drug resistant to B. anthracis beta-lactamase, evaluated the role of beta-lactamase production in the pharmacodynamic indices for B. anthracis killing and resistance prevention. Dose fractionation studies showed that trough/MIC and not time above MIC was the index for amoxicillin that was linked to successful outcome through resistance prevention. Failure of amoxicillin regimens was due to inducible or stable high level expression of beta-lactamases. Studies with dicloxacillin demonstrated that a time above MIC of ≥94% was linked with treatment success when B. anthracis beta-lactamase activity was negated. Recursive partitioning analysis showed that amoxicillin regimens that produced peak concentrations of <10.99 μg/ml and troughs of >1.75 μg/ml provided a 100% success rate. Other amoxicillin peak and trough values produced success rates of 28 to 67%. For postpartum and pregnant women and children, Monte Carlo simulations predicted success rates for amoxicillin at 1 g every 8 h (q8h) of 53, 33, and 44% (30 mg/kg q8h), respectively. We conclude that amoxicillin is suboptimal for postexposure prophylaxis of B. anthracis in pregnant and postpartum women and in children.
doi:10.1128/AAC.02616-12
PMCID: PMC3837908  PMID: 24041894
4.  Impact of Meropenem in Combination with Tobramycin in a Murine Model of Pseudomonas aeruginosa Pneumonia 
Pseudomonas aeruginosa pneumonia remains a difficult therapeutic problem. Optimal doses and modes of administration of single agents often do not result in acceptable outcomes. Further, emergence of resistance occurs frequently in this setting with single-agent chemotherapy. The purpose of these experiments was to evaluate combination chemotherapy with meropenem plus tobramycin for P. aeruginosa in a murine pneumonia model. Neutropenia was induced by cyclophosphamide. Pharmacokinetics of meropenem and tobramycin were determined using a population pharmacokinetic approach. Both drugs were given at 4-h intervals. Meropenem was administered as total daily doses of 30 to 600 mg/kg of body weight, while tobramycin doses ranged from 50 to 400 mg/kg. Combination therapy evaluated all combinations of 50, 100, and 150 mg/kg/day of tobramycin doses with 60 or 300 mg/kg/day of meropenem. Total and drug-resistant organisms were enumerated. Meropenem alone had a near-maximal effect at 60 mg/kg/day (3.18 log10 [CFU/g] kill from stasis). The time > MIC in epithelial lining fluid (ELF) at this dose was 35.25% of 24 h. For tobramycin alone, the near-maximal effect was at 150 mg/kg/day and the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC ratio) in ELF was 240.3. Resistance suppression occurred at an ELF AUC/MIC ratio of 110.6. For combination therapy, the near-maximal effect was reached at 60 mg/kg/day and 50 mg/kg/day of meropenem and tobramycin, which produced a 35.25% time > MIC in ELF and an ELF AUC/MIC ratio of 80.1. The interaction was additive. All combination regimens suppressed resistance. Combination therapy produced additive drug interaction and suppressed all resistance amplification. It is likely that optimal therapy for Pseudomonas aeruginosa pneumonia will involve a combination of agents.
doi:10.1128/AAC.02624-12
PMCID: PMC3716130  PMID: 23571540
5.  Natural History of Yersinia pestis Pneumonia in Aerosol-Challenged BALB/c Mice 
After a relatively short untreated interval, pneumonic plague has a mortality approaching 100%. We employed a murine model of aerosol challenge with Yersinia pestis to investigate the early course of pneumonic plague in the lung, blood, and spleen. We fit a mathematical model to all data simultaneously. The model fit to the data was acceptable. The number of organisms in the lung at baseline was estimated to be 135 (median) or 1,184 (mean) CFU/g. The doubling time was estimated as 1.5 to 1.7 h. Between 1 and 12 h postexposure, counts declined, but they then increased by 24 h, a finding hypothesized to be due to innate immunity. The model predicted that innate immunity declined with a half-time of 3 to 3.8 h. The threshold for bacteremia was 6.4 × 104 to 1.52 × 106 CFU/g. By 42 to 48 h, stationary phase was obtained. Lung bacterial burdens exceeded 10 log CFU/g. Obviating early defenses allows for rapid amplification of Y. pestis in bacteremia, making the rapid course with high mortality understandable.
doi:10.1128/AAC.02504-12
PMCID: PMC3632931  PMID: 23403418
6.  Pharmacodynamic Analysis of a Serine Protease Inhibitor, MK-4519, against Hepatitis C Virus Using a Novel In Vitro Pharmacodynamic System 
The development of new antiviral compounds active against hepatitis C virus (HCV) has surged in recent years. In order for these new compounds to be efficacious in humans, optimal dosage regimens for each compound must be elucidated. We have developed a novel in vitro pharmacokinetic/pharmacodynamic system, the BelloCell system, to identify optimal dosage regimens for anti-HCV compounds. In these experiments, genotype 1b HCV replicon-bearing cells (2209-23 cells) were inoculated onto carrier flakes in BelloCell bottles and treated with MK-4519, a serine protease inhibitor. Our dose-ranging studies illustrated that MK-4519 inhibited replicon replication in a dose-dependent manner, yielding a 50% effective concentration (EC50) of 1.8 nM. Dose-fractionation studies showed that shorter dosing intervals resulted in greater replicon suppression, indicating that the time that the concentration is greater than the EC50 is the pharmacodynamic parameter for MK-4519 linked with inhibition of replicon replication. Mutations associated with resistance to serine protease inhibitors were detected in replicons harvested from all treatment arms. These data suggest that MK-4519 is highly active against genotype 1b HCV, but monotherapy is not sufficient to prevent the amplification of resistant replicons. In summary, our findings show that the BelloCell system is a useful and clinically relevant tool for predicting optimal dosage regimens for anti-HCV compounds.
doi:10.1128/AAC.05383-11
PMCID: PMC3294889  PMID: 22155837
7.  Impact of Spores on the Comparative Efficacies of Five Antibiotics for Treatment of Bacillus anthracis in an In Vitro Hollow Fiber Pharmacodynamic Model 
Bacillus anthracis, the bacterium that causes anthrax, is an agent of bioterrorism. The most effective antimicrobial therapy for B. anthracis infections is unknown. An in vitro pharmacodynamic model of B. anthracis was used to compare the efficacies of simulated clinically prescribed regimens of moxifloxacin, linezolid, and meropenem with the “gold standards,” doxycycline and ciprofloxacin. Treatment outcomes for isogenic spore-forming and non-spore-forming strains of B. anthracis were compared. Against spore-forming B. anthracis, ciprofloxacin, moxifloxacin, linezolid, and meropenem reduced the B. anthracis population by 4 log10 CFU/ml over 10 days. Doxycycline reduced the population of this B. anthracis strain by 5 log10 CFU/ml (analysis of variance [ANOVA] P = 0.01 versus other drugs). Against an isogenic non-spore-forming strain, meropenem killed the vegetative B. anthracis the fastest, followed by moxifloxacin and ciprofloxacin and then doxycycline. Linezolid offered the lowest bacterial kill rate. Heat shock studies using the spore-producing B. anthracis strain showed that with moxifloxacin, ciprofloxacin, and meropenem therapies the total population was mostly spores, while the population was primarily vegetative bacteria with linezolid and doxycycline therapies. Spores have a profound impact on the rate and extent of killing of B. anthracis. Against spore-forming B. anthracis, the five antibiotics killed the total (spore and vegetative) bacterial population at similar rates (within 1 log10 CFU/ml of each other). However, bactericidal antibiotics killed vegetative B. anthracis faster than bacteriostatic drugs. Since only vegetative-phase B. anthracis produces the toxins that may kill the infected host, the rate and mechanism of killing of an antibiotic may determine its overall in vivo efficacy. Further studies are needed to examine this important observation.
doi:10.1128/AAC.01109-10
PMCID: PMC3294912  PMID: 22155821
8.  Evaluation of Once-Daily Vancomycin against Methicillin-Resistant Staphylococcus aureus in a Hollow-Fiber Infection Model 
For methicillin-resistant Staphylococcus aureus (MRSA) infections, data suggest that the clinical response is significantly better if the total vancomycin area under the concentration-time curve (AUC)/MIC ratio is ≥400. While the AUC/MIC ratio is the accepted pharmacokinetic/pharmacodynamic (PK/PD) index for vancomycin, this target has been achieved using multiple daily doses. We are unaware of a systematically designed dose fractionation study to compare the bactericidal activity of once-daily administration to that of traditional twice-daily administration. A dose fractionation study was performed with vancomycin in an in vitro hollow-fiber infection model against an MRSA USA300 strain (MIC of 0.75 μg/ml) using an inoculum of ∼106 CFU/ml. The three vancomycin regimens evaluated for 168 h were 2 g every 24 h (q24h) as a 1-h infusion, 1 g q12h as a 1-h infusion, and 2 g q24h as a continuous infusion. Free steady-state concentrations (assuming 45% binding) for a total daily AUC/MIC ratio of ≥400 were simulated for all regimens. A validated liquid chromatography-tandem mass spectrometry method was used to determine vancomycin concentrations. Although once-daily and twice-daily dosage regimens exhibited total trough concentrations of <15 μg/ml, all regimens achieved similar bactericidal activities between 24 and 168 h and suppressed the amplification of nonsusceptible subpopulations. No colonies were found on agar plates with 3× MIC for any of the treatment arms. Overall, the results suggest that once-daily vancomycin administration is feasible from a PK/PD perspective and merits further inquiry in the clinical arena.
doi:10.1128/AAC.05664-11
PMCID: PMC3264248  PMID: 22083484
9.  Differential Effects of Linezolid and Ciprofloxacin on Toxin Production by Bacillus anthracis in an In Vitro Pharmacodynamic System 
Bacillus anthracis causes anthrax. Ciprofloxacin is a gold standard for the treatment of anthrax. Previously, using the non-toxin-producing ΔSterne strain of B. anthracis, we demonstrated that linezolid was equivalent to ciprofloxacin for reducing the total (vegetative and spore) bacterial population. With ciprofloxacin therapy, the total population consisted of spores. With linezolid therapy, the population consisted primarily of vegetative bacteria. Linezolid is a protein synthesis inhibitor, while ciprofloxacin is not. Since toxins are produced only by vegetative B. anthracis, the effect of linezolid and ciprofloxacin on toxin production is of interest. The effect of simulated clinical regimens of ciprofloxacin and linezolid on the vegetative and spore populations and on toxin production was examined in an in vitro pharmacodynamic model over 15 days by using the toxin-producing Sterne strain of B. anthracis. Ciprofloxacin and linezolid reduced the total Sterne population at similar rates. With ciprofloxacin therapy, the total Sterne population consisted of spores. With linezolid therapy, >90% of the population was vegetative B. anthracis. With ciprofloxacin therapy, toxin was first detectable at 3 h and remained detectable for at least 5 h. Toxin was never detected with linezolid therapy. Ciprofloxacin and linezolid reduced the total Sterne population at similar rates. However, the B. anthracis population was primarily spores with ciprofloxacin therapy and was primarily vegetative bacteria with linezolid therapy. Toxin production was detected for at least 5 h with ciprofloxacin therapy but was never detected with linezolid treatment. Linezolid may have an advantage over ciprofloxacin for the treatment of B. anthracis infections.
doi:10.1128/AAC.05724-11
PMCID: PMC3256020  PMID: 22064542
10.  Resistance Emergence Mechanism and Mechanism of Resistance Suppression by Tobramycin for Cefepime for Pseudomonas aeruginosa 
The panoply of resistance mechanisms in Pseudomonas aeruginosa makes resistance suppression difficult. Defining optimal regimens is critical. Cefepime is a cephalosporin whose 3′ side chain provides some stability against AmpC β-lactamases. We examined the activity of cefepime against P. aeruginosa wild-type strain PAO1 and its isogenic AmpC stably derepressed mutant in our hollow-fiber infection model. Dose-ranging studies demonstrated complete failure with resistance emergence (both isolates). Inoculum range studies demonstrated ultimate failure for all inocula. Lower inocula failed last (10 days to 2 weeks). Addition of a β-lactamase inhibitor suppressed resistance even with the stably derepressed isolate. Tobramycin combination studies demonstrated resistance suppression in both the wild-type and the stably derepressed isolates. Quantitating the RNA message by quantitative PCR demonstrated that tobramycin decreased the message relative to that in cefepime-alone experiments. Western blotting with AmpC-specific antibody for P. aeruginosa demonstrated decreased expression. We concluded that suppression of β-lactamase expression by tobramycin (a protein synthesis inhibitor) was at least part of the mechanism behind resistance suppression. Monte Carlo simulation demonstrated that a regimen of 2 g of cefepime every 8 h plus 7 mg/kg of body weight of tobramycin daily would provide robust resistance suppression for Pseudomonas isolates with cefepime MIC values up to 8 mg/liter and tobramycin MIC values up to 1 mg/liter. For P. aeruginosa resistance suppression, combination therapy is critical.
doi:10.1128/AAC.05252-11
PMCID: PMC3256024  PMID: 22005996
11.  Pharmacodynamics of β-Lactamase Inhibition by NXL104 in Combination with Ceftaroline: Examining Organisms with Multiple Types of β-Lactamases 
New broad-spectrum β-lactamases such as KPC enzymes and CTX-M-15 enzymes threaten to markedly reduce the utility of our armamentarium of β-lactam agents, even our most potent drugs, such as carbapenems. NXL104 is a broad-spectrum non-β-lactam β-lactamase inhibitor. In this evaluation, we examined organisms carrying defined β-lactamases and identified doses and schedules of NXL104 in combination with the new cephalosporin ceftaroline, which would maintain good bacterial cell kill and suppress resistance emergence for a clinically relevant period of 10 days in our hollow-fiber infection model. We examined three strains of Klebsiella pneumoniae and one isolate of Enterobacter cloacae. K. pneumoniae 27-908M carried KPC-2, SHV-27, and TEM-1 β-lactamases. Its isogenic mutant, K. pneumoniae 4207J, was “cured” of the plasmid expressing the KPC-2 enzyme. K. pneumoniae 24-1318A carried a CTX-M-15 enzyme, and E. cloacae 2-77C expressed a stably derepressed AmpC chromosomal β-lactamase. Dose-ranging experiments for NXL104 administered as a continuous infusion with ceftaroline at 600 mg every 8 h allowed identification of a 24-h area under the concentration-time curve (AUC) for NXL104 that mediated bactericidal activity and resistance suppression. Dose fractionation experiments identified that “time > threshold” was the pharmacodynamic index linked to cell kill and resistance suppression. Given these results, we conclude that NXL104 combined with ceftaroline on an 8-hourly administration schedule would be optimal for circumstances in which highly resistant pathogens are likely to be encountered. This combination dosing regimen should allow for optimal bacterial cell kill (highest likelihood of successful clinical outcome) and the suppression of resistance emergence.
doi:10.1128/AAC.05005-11
PMCID: PMC3256033  PMID: 22024819
12.  Impact of Granulocytes on the Antimicrobial Effect of Tedizolid in a Mouse Thigh Infection Model▿ 
Antimicrobial Agents and Chemotherapy  2011;55(11):5300-5305.
Tedizolid (TR-700, formerly torezolid) is the active component of the new oxazolidinone prodrug tedizolid phosphate (TR-701). We had previously demonstrated that tedizolid possessed potent antistaphylococcal activity superior to that of linezolid in a neutropenic mouse thigh infection model (A. Louie, W. Liu, R. Kulawy, and G. L. Drusano, Antimicrob. Agents Chemother. 55:3453-3460, 2011). In the current investigation, we used a mouse thigh infection model to delineate the effect of an interaction of TR-700 and granulocytes on staphylococcal cell killing. We compared the antistaphylococcal killing effect of doses of TR-701 equivalent to human exposures ranging from 200 to 3,200 mg/day in both granulocytopenic and normal mice. The mice were evaluated at 24, 48, and 72 h after therapy initiation. In granulocytopenic mice, a clear exposure response in which, depending on the time point of evaluation, stasis was achieved at “human-equivalent” doses of slightly below 2,300 mg/day (at 24 h) to slightly below 2,000 mg/day (at 72 h) was observed. In immune-normal animals, stasis was achieved at human-equivalent doses of slightly greater than 100 mg/day or less. The variance in bacterial cell killing results was attributable to the presence of granulocytes (without drug), the direct effect of TR-700 on Staphylococcus aureus, and the effect of the drug on Staphylococcus aureus mediated through granulocytes. The majority of the bacterial cell killing in normal animals was attributable to the effect of TR-700 mediated through granulocytes. Additional studies need to be undertaken to elucidate the mechanism underlying this observation.
doi:10.1128/AAC.00502-11
PMCID: PMC3195040  PMID: 21911576
13.  Dose Range Evaluation of Mycograb C28Y Variant, a Human Recombinant Antibody Fragment to Heat Shock Protein 90, in Combination with Amphotericin B-Desoxycholate for Treatment of Murine Systemic Candidiasis ▿ 
Systemic candidiasis causes significant mortality in patients despite amphotericin B (AMB) therapy. Mycograb C28Y variant, a human recombinant antibody fragment to heat shock protein 90, is closely related to Mycograb, which showed a survival advantage in combination with AMB in a phase III human trial. The Mycograb C28Y variant could potentially increase the antifungal effect of AMB. In our study, the interaction between AMB-desoxycholate (DAMB) and the Mycograb C28Y variant was characterized in vitro by using a checkerboard method. Quantitative cultures of kidneys, livers, and spleens of neutropenic mice with systemic Candida albicans infections were used to assess the in vivo interaction between 1.4 mg/kg of body weight/day of DAMB and 0.15, 1.5, and 15 mg/kg/day of the Mycograb C28Y variant after 1, 3, and 5 days of therapy. DAMB and Mycograb C28Y variant monotherapies, vehicle, and a no-treatment arm served as controls. Also, single- and multidose pharmacokinetics for the Mycograb C28Y variant were determined. Indifference or synergy between DAMB and the Mycograb C28Y variant was seen in two trials by the checkerboard method. The pharmacokinetics of the Mycograb C28Y variant was best described by a 2-compartment model with a median serum t1/2α of ∼0.198 h and a t1/2β of ∼1.77 h. In mice, DAMB together with the Mycograb C28Y variant was no more effective than AMB alone (P > 0.05 by analysis of variance). The Mycograb C28Y variant alone had no antifungal activity. We therefore conclude that the Mycograb C28Y variant in combination with DAMB offered no benefit over DAMB monotherapy in a neutropenic murine model of systemic candidiasis.
doi:10.1128/AAC.01324-10
PMCID: PMC3122395  PMID: 21502626
14.  In Vivo Pharmacodynamics of Torezolid Phosphate (TR-701), a New Oxazolidinone Antibiotic, against Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus Strains in a Mouse Thigh Infection Model ▿ 
Torezolid phosphate (TR-701) is the phosphate monoester prodrug of the oxazolidinone TR-700 which demonstrates potent in vitro activity against Gram-positive bacteria, including methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA). The pharmacodynamics of TR-701 or TR-700 (TR-701/700) against S. aureus is incompletely defined. Single-dose pharmacokinetic studies were conducted in mice for TR-701/700. Forty-eight-hour dose range and 24-hour dose fractionation studies were conducted in a neutropenic mouse thigh model of S. aureus infection using MRSA ATCC 33591 to identify the dose and schedule of administration of TR-701/700 that was linked with optimized antimicrobial effect. Additional dose range studies compared the efficacies of TR-701/700 and linezolid for one MSSA strain and one community-associated MRSA strain. In dose range studies, TR-701/700 was equally bactericidal against MSSA and MRSA. Mean doses of 37.6 and 66.9 mg/kg of body weight/day of TR-701/700 resulted in stasis and 1 log CFU/g decreases in bacterial densities, respectively, at 24 h, and mean doses of 35.3, 46.6, and 71.1 mg/kg/day resulted in stasis and 1 and 2 log CFU/g reductions, respectively, at 48 h. Linezolid administered at doses as high as 150 mg/kg/day did not achieve stasis at either time point. Dose fractionation studies demonstrated that the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC ratio) was the pharmacodynamic index for TR-701/700 that was linked with efficacy. TR-701/700 was highly active against MSSA and MRSA, in vivo, and was substantially more efficacious than linezolid, although linezolid's top exposure has half the human exposure. Dose fractionation studies showed that AUC/MIC was the pharmacodynamic index linked with efficacy, indicating that once-daily dosing in humans is feasible.
doi:10.1128/AAC.01565-10
PMCID: PMC3122459  PMID: 21502615
15.  Optimization of Aminoglycoside Therapy▿ 
Aminoglycosides are experiencing a resurgence in use because of the spread of multiresistant Gram-negative pathogens. Use of these agents is attended by the occurrence of nephrotoxicity. Aminoglycoside optimization of dose can be defined as the dose having the highest likelihood of a good outcome and the lowest likelihood of toxicity. We have defined the metric Δ as the difference between the likelihoods of good outcome and toxicity, with higher values being better. We developed a method for explicitly evaluating Δ for different daily doses of drug and different schedules of administration. In the empirical therapy setting, when aminoglycosides are administered every 12 h, treatment of infections caused by microbes with MIC values greater than 1 mg/liter cannot attain a high enough likelihood of a good outcome without engendering an unacceptable toxicity likelihood. Daily administration, by decrementing the likelihood of toxicity, allows higher doses to be employed with more acceptable probabilities of toxicity. Obtaining patient-specific information (concentration-time data) allows better identification of the patient's specific pharmacokinetic parameters and dispersion. As these become better identified, optimal doses become rapidly identified so that optimal outcomes are attained. Optimization of therapy for aminoglycosides requires understanding the relationship between exposure and response as well as that between exposure and toxicity. Furthermore, daily administration is much preferred, and stopping therapy as quickly as possible (a week or less may be optimal) will contribute to the ability to optimize therapy.
doi:10.1128/AAC.01314-10
PMCID: PMC3101448  PMID: 21402835
16.  Comparative Efficacies of Candidate Antibiotics against Yersinia pestis in an In Vitro Pharmacodynamic Model▿ 
Yersinia pestis, the bacterium that causes plague, is a potential agent of bioterrorism. Streptomycin is the “gold standard” for the treatment of plague infections in humans, but the drug is not available in many countries, and resistance to this antibiotic occurs naturally and has been generated in the laboratory. Other antibiotics have been shown to be active against Y. pestis in vitro and in vivo. However, the relative efficacies of clinically prescribed regimens of these antibiotics with streptomycin and with each other for the killing of Yersinia pestis are unknown. The efficacies of simulated pharmacokinetic profiles for human 10-day clinical regimens of ampicillin, meropenem, moxifloxacin, ciprofloxacin, and gentamicin were compared with the gold standard, streptomycin, for killing of Yersinia pestis in an in vitro pharmacodynamic model. Resistance amplification with therapy was also assessed. Streptomycin killed the microbe in one trial but failed due to resistance amplification in the second trial. In two trials, the other antibiotics consistently reduced the bacterial densities within the pharmacodynamic systems from 108 CFU/ml to undetectable levels (<102 CFU/ml) between 1 and 3 days of treatment. None of the comparator agents selected for resistance. The comparator antibiotics were superior to streptomycin against Y. pestis and deserve further evaluation.
doi:10.1128/AAC.01374-10
PMCID: PMC3101461  PMID: 21486959
17.  Impact of Burden on Granulocyte Clearance of Bacteria in a Mouse Thigh Infection Model ▿  
Antimicrobial Agents and Chemotherapy  2010;54(10):4368-4372.
We wished to delineate granulocytes' impact on the clearance of different bacterial burdens of Pseudomonas aeruginosa and Staphylococcus aureus in a granulocyte-replete mouse thigh infection model. A mouse thigh model was employed. Bacterial challenges from 105 to 3 × 107 CFU (S. aureus) and from 3 × 104 to 3 × 108 CFU (P. aeruginosa) were injected into murine posterior thighs. Organism quantitation was at baseline, 2 h (Pseudomonas only), and 24 h. A Michaelis-Menten population model was fit to the data for each organism. Breakpoints for microbial containment by granulocytes were identified. Bacterial burdens exceeding that breakpoint value resulted in organism multiplication. The Michaelis-Menten model fit the data well. For P. aeruginosa, the observed-predicted plot had a regression equation that explained over 98% of the variance (P ≪ 0.001). For S. aureus, this relationship explained greater than 94% of the variance (P ≪ 0.001). Maximal growth rate constants, maximal population burdens, and the bacterial loads at which granulocytes killed if half-saturated were not different. The kill rate constant for P. aeruginosa was almost 10 times that of S. aureus. Bacterial kill by granulocytes is saturable. No difference between saturation points of different isolates was seen. A higher bacterial burden means an increasing reliance on chemotherapy to drive bacterial clearance.
doi:10.1128/AAC.00133-10
PMCID: PMC2944594  PMID: 20516275
18.  Pharmacodynamic Modeling of Anti-Cancer Activity of Tetraiodothyroacetic Acid in a Perfused Cell Culture System 
PLoS Computational Biology  2011;7(2):e1001073.
Unmodified or as a poly[lactide-co-glycolide] nanoparticle, tetraiodothyroacetic acid (tetrac) acts at the integrin αvβ3 receptor on human cancer cells to inhibit tumor cell proliferation and xenograft growth. To study in vitro the pharmacodynamics of tetrac formulations in the absence of and in conjunction with other chemotherapeutic agents, we developed a perfusion bellows cell culture system. Cells were grown on polymer flakes and exposed to various concentrations of tetrac, nano-tetrac, resveratrol, cetuximab, or a combination for up to 18 days. Cells were harvested and counted every one or two days. Both NONMEM VI and the exact Monte Carlo parametric expectation maximization algorithm in S-ADAPT were utilized for mathematical modeling. Unmodified tetrac inhibited the proliferation of cancer cells and did so with differing potency in different cell lines. The developed mechanism-based model included two effects of tetrac on different parts of the cell cycle which could be distinguished. For human breast cancer cells, modeling suggested a higher sensitivity (lower IC50) to the effect on success rate of replication than the effect on rate of growth, whereas the capacity (Imax) was larger for the effect on growth rate. Nanoparticulate tetrac (nano-tetrac), which does not enter into cells, had a higher potency and a larger anti-proliferative effect than unmodified tetrac. Fluorescence-activated cell sorting analysis of harvested cells revealed tetrac and nano-tetrac induced concentration-dependent apoptosis that was correlated with expression of pro-apoptotic proteins, such as p53, p21, PIG3 and BAD for nano-tetrac, while unmodified tetrac showed a different profile. Approximately additive anti-proliferative effects were found for the combinations of tetrac and resveratrol, tetrac and cetuximab (Erbitux), and nano-tetrac and cetuximab. Our in vitro perfusion cancer cell system together with mathematical modeling successfully described the anti-proliferative effects over time of tetrac and nano-tetrac and may be useful for dose-finding and studying the pharmacodynamics of other chemotherapeutic agents or their combinations.
Author Summary
Clinical treatment protocols for specific solid cancers have favorable response rates of 20%–25%. Cancer cells frequently become resistant to treatment. Therefore, novel anti-cancer drugs and combination regimens need to be developed. Conducting enough clinical trials to evaluate combinations of anti-cancer agents in several regimens to optimize treatment is not feasible. We showed that tetrac inhibits the growth of various cancer cell lines. Our newly developed in vitro system allowed studying the effects of tetrac over time in various human cancer cell lines. Our mathematical model could distinguish two effects of tetrac and may be used to predict effects of other than the studied dosage regimens. Human breast cancer cells were more sensitive to the effect on success of replication than the effect on growth rate, whereas the maximum possible effect was larger for the latter effect. Nanoparticulate tetrac, which does not enter into cells, had a larger effect than unmodified tetrac. The combinations of tetrac and resveratrol, tetrac and cetuximab (Erbitux), and nano-tetrac and cetuximab showed approximately additive effects. Our in vitro perfusion system together with mathematical modeling may be useful for dose-finding, translation from in vitro to animal and human studies, and studying effects of other chemotherapeutic agents or their combinations.
doi:10.1371/journal.pcbi.1001073
PMCID: PMC3033367  PMID: 21304935
19.  Impact of Different Carbapenems and Regimens of Administration on Resistance Emergence for Three Isogenic Pseudomonas aeruginosa Strains with Differing Mechanisms of Resistance▿  
We compared drugs (imipenem and doripenem), doses (500 mg and 1 g), and infusion times (0.5 and 1.0 [imipenem], 1.0 and 4.0 h [doripenem]) in our hollow-fiber model, examining cell kill and resistance suppression for three isogenic strains of Pseudomonas aeruginosa PAO1. The experiments ran for 10 days. Serial samples were taken for total organism and resistant subpopulation counts. Drug concentrations were determined by high-pressure liquid chromatography-tandem mass spectrometry (LC/MS/MS). Free time above the MIC (time > MIC) was calculated using ADAPT II. Time to resistance emergence was examined with Cox modeling. Cell kill and resistance emergence differences were explained, in the main, by differences in potency (MIC) between doripenem and imipenem. Prolonged infusion increased free drug time > MIC and improved cell kill. For resistance suppression, the 1-g, 4-h infusion was able to completely suppress resistance for the full period of observation for the wild-type isolate. For the mutants, control was ultimately lost, but in all cases, this was the best regimen. Doripenem gave longer free time > MIC than imipenem and, therefore, better cell kill and resistance suppression. For the wild-type organism, the 1-g, 4-h infusion regimen is preferred. For organisms with resistance mutations, larger doses or addition of a second drug should be studied.
doi:10.1128/AAC.01721-09
PMCID: PMC2876389  PMID: 20308371
20.  The Combination of Meropenem and Levofloxacin Is Synergistic with Respect to both Pseudomonas aeruginosa Kill Rate and Resistance Suppression▿  
New approaches are needed for the treatment of Pseudomonas aeruginosa infections. All available single agents are suboptimal, especially for resistance suppression. Classical β-lactam/aminoglycoside combinations are not used often enough at least in part because of concern for nephrotoxicity. We evaluated the combination of meropenem and levofloxacin against the P. aeruginosa PAO1 wild type and its isogenic MexAB pump-overexpressed mutant. The drugs were studied using an in vitro hollow-fiber pharmacodynamic infection model. There were 16 different regimens evaluated for both isolates. Both total population and resistant subpopulations were quantified. Drug concentrations were measured by liquid chromatography-tandem mass spectrometry (LC-MS-MS). The impact of monotherapy versus that of combination therapy for attainment of a 3-log cell kill and for resistance suppression was examined using Kaplan-Meier analysis. Drug exposures were calculated by fitting the concentration-time data using the ADAPT II package of programs. For both isolates, monotherapy allowed resistance emergence with all but the largest exposure or with all exposures. In contrast, there was no resistance emergence with any combination regimen. Kaplan-Meier analysis showed significant differences in time to attainment of a 3-log cell kill as well as time to resistance emergence for monotherapy and combination therapy for both isolates, in favor of the combination regimens. Determination of the pharmacodynamic indices associated with resistance suppression demonstrated a 2- to 3-fold reduction with the use of combinations. Combination therapy with meropenem and levofloxacin provides a significantly faster time to attain a 3-log cell kill and significantly better resistance suppression than does either monotherapy. This combination should be evaluated in a clinical trial.
doi:10.1128/AAC.00065-10
PMCID: PMC2876409  PMID: 20368395
21.  The Combination of Rifampin plus Moxifloxacin Is Synergistic for Suppression of Resistance but Antagonistic for Cell Kill of Mycobacterium tuberculosis as Determined in a Hollow-Fiber Infection Model 
mBio  2010;1(3):e00139-10.
Moxifloxacin is under development for expanded use against Mycobacterium tuberculosis. Rifampin is a mainstay of therapy. We examined the interaction of moxifloxacin plus rifampin for log-phase and nonreplicating persister (NRP) organisms. For this evaluation, we employed our hollow-fiber infection model, in which organisms are exposed to clinically relevant drug concentration-time profiles and the impact on bacterial cell kill and resistant subpopulation amplification is determined. In log phase, resistance emergence was observed in all monotherapy regimens and in no combination therapy regimen. No difference was seen in time to a 3-log reduction in the bacterial burden; there was a significant difference in time to resistance emergence (P = 0.0006). In the NRP experiment, no resistance emergence was seen. There was a significant difference between the monotherapy and combination therapy regimens in time to a 3-log reduction in the bacterial burden (P = 0.042). The combination is efficacious for suppressing resistant organisms but is antagonistic for cell kill.
IMPORTANCE
M. tuberculosis infects one-third of the world’s population. Multiresistant organisms have become more frequent, threatening our ability to provide adequate chemotherapy. Moxifloxacin has been seen as an important new agent with the potential to supplant isoniazid or add to the rifampin/isoniazid combination. M. tuberculosis also exists in different physiological states, including the nonreplicating persister phenotype. We examined the moxifloxacin/rifampin combination in a new in vitro system to allow judgment of how moxifloxacin would interact with rifampin and allow its performance in clinical trials to be placed into perspective. Importantly, the combination suppressed resistance emergence, but at the price of slightly slowing bacterial cell kill. This new combination is a welcome addition to the physician’s armamentarium.
doi:10.1128/mBio.00139-10
PMCID: PMC2925073  PMID: 20802826
22.  Pharmacodynamics of Levofloxacin in a Murine Pneumonia Model of Pseudomonas aeruginosa Infection: Determination of Epithelial Lining Fluid Targets▿  
The dose choice for Pseudomonas aeruginosa remains a matter of debate. The actual exposure targets required for multilog killing of organisms at the primary infection site have not been delineated. We studied Pseudomonas aeruginosa PAO1 using a murine model of pneumonia. We employed a large mathematical model to fit all the concentration-time data in plasma and epithelial lining fluid (ELF) as well as colony counts in lung simultaneously for all drug doses. Penetration into ELF was calculated to be approximately 77.7%, as indexed to the ratio of the area under the concentration-time curve for ELF (AUCELF) to the AUCplasma. We determined the ELF concentration-time profile required to drive a stasis response as well as 1-, 2-, or 3-log10(CFU/g) kill. AUC/MIC ratios of 12.4, 31.2, 62.8, and 127.6 were required to drive these bacterial responses. Emergence of resistance was seen only at the two lowest doses (three of five animals at 50 mg/kg [body weight] and one of five animals at 100 mg/kg). The low exposure targets were likely driven by a low mutational frequency to resistance. Bridging to humans was performed using Monte Carlo simulation. With a 750-mg levofloxacin dose, target attainment rates fell below 90% at 4 mg/liter, 1 mg/liter, and 0.5 mg/liter for 1-, 2-, and 3-log kills, respectively. Given the low exposure targets seen with this strain, we conclude that levofloxacin at a 750-mg dose is not adequate for serious Pseudomonas aeruginosa pneumonia as a single agent. More isolates need to be studied to make these observations more robust.
doi:10.1128/AAC.00006-09
PMCID: PMC2715581  PMID: 19364849
23.  Differing Effects of Combination Chemotherapy with Meropenem and Tobramycin on Cell Kill and Suppression of Resistance of Wild-Type Pseudomonas aeruginosa PAO1 and Its Isogenic MexAB Efflux Pump-Overexpressed Mutant▿  
The drug interaction terminology (synergy, additivity, antagonism) relates to bacterial kill. The suppression of resistance requires greater drug exposure. We examined the combination of meropenem and tobramycin for kill and resistance suppression (wild-type Pseudomonas aeruginosa PAO1 and its isogenic MexAB-overexpressed mutant). The drug interaction was additive. The introduction of MexAB overexpression significantly altered the 50% inhibitory concentration of meropenem but not that of tobramycin, resulting in the recovery of a marked increase in colony numbers from drug-containing plates. For the wild type, more tobramycin-resistant isolates than meropenem-resistant isolates were present, and the tobramycin-resistant isolates were harder to suppress. MexAB overexpression unexpectedly caused a significant increase in the number of tobramycin-resistant mutants, as indexed to the area under the curve of slices through the inverted U resistance mountain. The differences were significant, except in the absence of meropenem. We hypothesize that the pump resulted in the presence of less meropenem for organism inhibition, allowing more rounds of replication and also affecting the numbers of tobramycin-resistant mutants. When resistance suppression is explored by combination chemotherapy, it is important to examine the impacts of differing resistance mechanisms for both agents.
doi:10.1128/AAC.01680-08
PMCID: PMC2687233  PMID: 19289521
24.  Is 60 Days of Ciprofloxacin Administration Necessary for Postexposure Prophylaxis for Bacillus anthracis?▿  
Antimicrobial Agents and Chemotherapy  2008;52(11):3973-3979.
Sixty days of ciprofloxacin administration at 500 mg every 12 h is currently recommended for the prophylaxis of inhalational exposure to Bacillus anthracis. We examined Bacillus anthracis (Δ-Sterne strain) in our hollow-fiber infection model. We measured the ciprofloxacin concentrations achieved and the number of organisms present before heat shock (total population) and after heat shock (spore population). We fit a mathematical model to these data. Monte Carlo simulation with differing initial spore burdens (3, 5, and 6.9 log10 CFU/ml) demonstrated that 35 days of this regimen would completely clear the spore burden in 95% of patients. Durations of 110 days did not achieve 99.9% eradication, irrespective of initial burden, because of between-patient variance in drug pharmacokinetics. Given the absence of person-to-person transmission for Bacillus anthracis, adverse drug effects with long-term ciprofloxacin administration, and the possibility of engendering resistance in bodily flora, shorter prophylaxis duration should be given consideration, along with careful monitoring of all exposed individuals.
doi:10.1128/AAC.00453-08
PMCID: PMC2573157  PMID: 18725437
25.  Concentration-Dependent Mycobacterium tuberculosis Killing and Prevention of Resistance by Rifampin▿  
Antimicrobial Agents and Chemotherapy  2007;51(11):3781-3788.
Rifampin is a cornerstone of modern antituberculosis therapy. However, rifampin's half-life of 3 h is believed to limit its utility for intermittent therapy, so new congeners with long half-lives are being developed. Using an in vitro pharmacokinetic-pharmacodynamic model of tuberculosis, we examined the relationships between rifampin exposure, microbial killing of log-phase-growth Mycobacterium tuberculosis, and suppression of resistance. Rifampin's microbial killing was linked to the area under the concentration-time curve-to-MIC ratio. The suppression of resistance was associated with the free peak concentration (Cmax)-to-MIC ratio and not the duration that the rifampin concentration was above MIC. Rifampin prevented resistance to itself at a free Cmax/MIC ratio of ≥175. The postantibiotic effect duration was ≥5.2 days and was most closely related to the Cmax/MIC ratio (r2 = 0.96). To explain rifampin's concentration-dependent effect, we examined the kinetics of rifampin entry into M. tuberculosis. Rifampin achieved concentration-dependent intracellular steady-state concentrations within 15 min. Our results suggest that doses of rifampin higher than those currently employed would optimize the effect of rifampin, if patients could tolerate them. Another major implication is that in the design of new rifampin congeners for intermittent therapy, the important properties may include (i) the efficient entry of the rifamycin into M. tuberculosis, (ii) the achievement of a free Cmax/MIC of >175 that can be tolerated by patients, and (iii) a long postantibiotic effect duration.
doi:10.1128/AAC.01533-06
PMCID: PMC2151424  PMID: 17724157

Results 1-25 (47)