Search tips
Search criteria

Results 1-25 (33)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
author:("kretz, Jens")
1.  Let there be bioluminescence – Development of a biophotonic imaging platform for in situ analyses of oral biofilms in animal models 
Environmental microbiology  2015;18(1):174-190.
In the current study, we describe a novel biophotonic imaging-based reporter system that is particularly useful for the study of virulence in polymicrobial infections and interspecies interactions within animal models. A suite of luciferase enzymes was compared using three early colonizing species of the human oral flora (Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis) to determine the utility of the different reporters for multiplexed imaging studies in vivo. Using the multiplex approach, we were able to track individual species within a dual species oral infection model in mice with both temporal and spatial resolution. We also demonstrate how biophotonic imaging of multiplexed luciferase reporters could be adapted for real-time quantification of bacterial gene expression in situ. By creating an inducible dual-luciferase expressing reporter strain of S. mutans, we were able to exogenously control and measure expression of nlmAB (encoding the bacteriocin mutacin IV) within mice to assess its importance for the persistence ability of S. mutans in the oral cavity. The imaging system described in the current study circumvents many of the inherent limitations of current animal model systems, which should now make it feasible to test hypotheses that were previously impractical to model.
PMCID: PMC5050008  PMID: 26119252
2.  RNA regulators of host immunity and pathogen adaptive responses in the oral cavity 
The recent explosion of RNA-seq studies has resulted in a newfound appreciation for the importance of riboregulatory RNAs in the posttranscriptional control of eukaryotic and prokaryotic genetic networks. The current review will explore the role of trans-riboregulatory RNAs in various adaptive responses of host and pathogen in the oral cavity.
PMCID: PMC4485933  PMID: 25790757
small RNA; noncoding RNA; microRNA; host pathogen interactions; gene expression regulation
3.  Comparison of genes required for H2O2 resistance in Streptococcus gordonii and Streptococcus sanguinis 
Microbiology  2014;160(Pt 12):2627-2638.
Hydrogen peroxide (H2O2) is produced by several members of the genus Streptococcus mainly through the pyruvate oxidase SpxB under aerobic growth conditions. The acute toxic nature of H2O2 raises the interesting question of how streptococci cope with intrinsically produced H2O2, which subsequently accumulates in the microenvironment and threatens the closely surrounding population. Here, we investigate the H2O2 susceptibility of oral Streptococcus gordonii and Streptococcus sanguinis and elucidate potential mechanisms of how they protect themselves from the deleterious effect of H2O2. Both organisms are considered primary colonizers and occupy the same intraoral niche making them potential targets for H2O2 produced by other species. We demonstrate that S. gordonii produces relatively more H2O2 and has a greater ability for resistance to H2O2 stress. Functional studies show that, unlike in Streptococcus pneumoniae, H2O2 resistance is not dependent on a functional SpxB and confirms the important role of the ferritin-like DNA-binding protein Dps. However, the observed increased H2O2 resistance of S. gordonii over S. sanguinis is likely to be caused by an oxidative stress protection machinery present even under anaerobic conditions, while S. sanguinis requires a longer period of time for adaptation. The ability to produce more H2O2 and be more resistant to H2O2 might aid S. gordonii in the competitive oral biofilm environment, since it is lower in abundance yet manages to survive quite efficiently in the oral biofilm.
PMCID: PMC4252910  PMID: 25280752
4.  Posttranscriptional regulation of oral bacterial adaptive responses 
Current oral health reports  2014;1(1):50-58.
Within the past 10 years, it has become increasingly evident that posttranscriptional regulation is among the most important mechanisms used by bacteria to modulate gene expression in response to environmental perturbations. Posttranscriptional mechanisms provide a much faster response and lower energy burden compared to most transcription regulatory pathways and they have the unique advantage that they can override existing transcriptional responses once the environment changes. Because of this, virulence factor gene expression is particularly suited for posttranscriptional control, and not surprisingly, an abundance of recent evidence indicates that posttranscriptional regulators are the predominant virulence regulators of human pathogens. Typically, this involves global riboregulators that primarily serve as modulators of virulence gene translation initiation and/or mRNA stability. Surprisingly little has been reported about posttranscriptional regulatory pathways in oral bacteria, but recent results suggest that oral species are equally dependent upon posttranscriptional control of their adaptive genetic responses. In this report, we discuss the major themes in RNA-based regulation of gene expression and review the available literature related to the most commonly studied oral bacterial species.
PMCID: PMC3969799  PMID: 24695639
Posttranscriptional Regulation; Gene Regulation; Environmental Adaptation; Small RNA, RNA Processing; Ribonucleases; RNase Y; RNase E; RNase J1; RNase J2; Oral Microbiology, Streptococcus
5.  Probing Oral Microbial Functionality – Expression of spxB in Plaque Samples 
PLoS ONE  2014;9(1):e86685.
The Human Oral Microbiome Database (HOMD) provides an extensive collection of genome sequences from oral bacteria. The sequence information is a static snapshot of the microbial potential of the so far sequenced species. A major challenge is to connect the microbial potential encoded in the metagenome to an actual function in the in vivo oral biofilm. In the present study we took a reductionist approach and identified a considerably conserved metabolic gene, spxB to be encoded by a majority of oral streptococci using the HOMD metagenome information. spxB encodes the pyruvate oxidase responsible for the production of growth inhibiting amounts of hydrogen peroxide (H2O2) and has previously been shown as important in the interspecies competition in the oral biofilm. Here we demonstrate a strong correlation of H2O2 production and the presence of the spxB gene in dental plaque. Using Real-Time RT PCR we show that spxB is expressed in freshly isolated human plaque samples from several donors and that the expression is relative constant when followed over time in one individual. This is the first demonstration of an oral community encoded gene expressed in vivo suggesting a functional role of spxB in oral biofilm physiology. This also demonstrates a possible strategy to connect the microbial potential of the metagenome to its functionality in future studies by identifying similar highly conserved genes in the oral microbial community.
PMCID: PMC3906080  PMID: 24489768
6.  The impact of horizontal gene transfer on the adaptive ability of the human oral microbiome 
The oral microbiome is composed of a multitude of different species of bacteria, each capable of occupying one or more of the many different niches found within the human oral cavity. This community exhibits many types of complex interactions which enable it to colonize and rapidly respond to changes in the environment in which they live. One of these interactions is the transfer, or acquisition, of DNA within this environment, either from co-resident bacterial species or from exogenous sources. Horizontal gene transfer in the oral cavity gives some of the resident bacteria the opportunity to sample a truly enormous metagenome affording them considerable adaptive potential which may be key to survival in such a varying environment. In this review the underlying mechanisms of HGT are discussed in relation to the oral microbiome with numerous examples described where the direct acquisition of exogenous DNA has contributed to the fitness of the bacterial host within the human oral cavity.
PMCID: PMC4157583  PMID: 25250243
horizontal gene transfer; mobile genetic elements; conjugation; transformation; hydrogen peroxide; extracellular DNA; oral cavity; biofilm
7.  Multiple Roles of RNase Y in Streptococcus pyogenes mRNA Processing and Degradation 
Journal of Bacteriology  2013;195(11):2585-2594.
Control over mRNA stability is an essential part of gene regulation that involves both endo- and exoribonucleases. RNase Y is a recently identified endoribonuclease in Gram-positive bacteria, and an RNase Y ortholog has been identified in Streptococcus pyogenes (group A streptococcus [GAS]). In this study, we used microarray and Northern blot analyses to determine the S. pyogenes mRNA half-life of the transcriptome and to understand the role of RNase Y in global mRNA degradation and processing. We demonstrated that S. pyogenes has an unusually high mRNA turnover rate, with median and mean half-lives of 0.88 min and 1.26 min, respectively. A mutation of the RNase Y-encoding gene (rny) led to a 2-fold increase in overall mRNA stability. RNase Y was also found to play a significant role in the mRNA processing of virulence-associated genes as well as in the rapid degradation of rnpB read-through transcripts. From these results, we conclude that RNase Y is a pleiotropic regulator required for mRNA stability, mRNA processing, and removal of read-through transcripts in S. pyogenes.
PMCID: PMC3676074  PMID: 23543715
8.  Characterization of Pyruvate Uptake in Escherichia coli K-12 
PLoS ONE  2013;8(6):e67125.
The monocarboxylate pyruvate is an important metabolite and can serve as sole carbon source for Escherichia coli. Although specific pyruvate transporters have been identified in two bacterial species, pyruvate transport is not well understood in E. coli. In the present study, pyruvate transport was investigated under different growth conditions. The transport of pyruvate shows specific activities depending on the growth substrate used as sole carbon source, suggesting the existence of at least two systems for pyruvate uptake: i) one inducible system and probably highly specific for pyruvate and ii) one system active under non-induced conditions. Using the toxic pyruvate analog 3-fluoropyruvate, a mutant was isolated unable to grow on and transport pyruvate. Further investigation revealed that a revertant selected for growth on pyruvate regained the inducible pyruvate transport activity. Characterization of pyruvate excretion showed that the pyruvate transport negative mutant accumulated pyruvate in the growth medium suggesting an additional transport system for pyruvate excretion. The here presented data give valuable insight into the pyruvate metabolism and transport of E. coli suggesting the presence of at least two uptake systems and one excretion system to balance the intracellular level of pyruvate.
PMCID: PMC3688616  PMID: 23818977
9.  Role of LytF and AtlS in eDNA Release by Streptococcus gordonii 
PLoS ONE  2013;8(4):e62339.
Extracellular DNA (eDNA) is an important component of the biofilm matrix produced by many bacteria. In general, the release of eDNA is associated with the activity of muralytic enzymes leading to obvious cell lysis. In the Gram-positive oral commensal Streptococcus gordonii, eDNA release is dependent on pyruvate oxidase generated hydrogen peroxide (H2O2). Addition of H2O2 to cells grown under conditions non-permissive for H2O2 production causes eDNA release. Furthermore, eDNA release is maximal under aerobic growth conditions known to induce pyruvate oxidase gene expression and H2O2 production. Obvious cell lysis, however, does not occur. Two enzymes have been recently associated with eDNA release in S. gordonii. The autolysin AtlS and the competence regulated murein hydrolase LytF. In the present report, we investigated the role of both proteins in the H2O2 dependent eDNA release process. Single and double mutants in the respective genes for LytF and AtlS released less eDNA under normal growth conditions, but the AtlS mutant was still inducible for eDNA release by external H2O2. Moreover, we showed that the AtlS mutation interfered with the ability of S. gordonii to produce eDNA release inducing amounts of H2O2. Our data support a role of LytF in the H2O2 eDNA dependent release of S. gordonii as part of the competence stress pathway responding to oxidative stress.
PMCID: PMC3634736  PMID: 23638042
10.  CcpA Regulates Biofilm Formation and Competence in Streptococcus gordonii 
Molecular Oral Microbiology  2011;27(2):83-94.
Streptococcus gordonii is an important member of the oral biofilm community. As oral commensal streptococci, S. gordonii is considered beneficial in promoting biofilm homeostasis. CcpA is known as central regulator of carbon catabolite repression in Gram-positive bacteria and is also involved in the control of virulence gene expression. To further establish the role of CcpA as central regulator in S. gordonii, the effect of CcpA on biofilm formation and natural competence of S. gordonii was investigated. These phenotypic traits have been suggested to be important to oral streptococci in coping with environmental stress. Here we demonstrate that a CcpA mutant was severely impaired in its biofilm forming ability, showed a defect in extracellular polysaccharide production and reduced competence. The data suggest that CcpA is involved in the regulation of biofilm formation and competence development in S. gordonii.
PMCID: PMC3296961  PMID: 22394467
11.  Evaluation of bacteria-induced enamel demineralization using optical profilometry 
Streptococcus mutans is considered a major causative of tooth decay due to it’s ability to rapidly metabolize carbohydrates such as sucrose. One prominent excreted end product of sucrose metabolism is lactic acid. Lactic acid causes a decrease in the pH of the oral environment with subsequent demineralization of the tooth enamel. Biologically relevant bacteria-induced enamel demineralization was studied.
Optical profiling was used to measure tooth enamel decay with vertical resolution under one nanometer and lateral features with optical resolution as a result of S. mutans biofilm exposure. Comparison measurements were made using AFM.
After 72 hr of biofilm exposure the enamel displayed an 8-fold increase in the observed roughness average, (Ra), as calculated over the entire measured array. Similarly, the average root mean square (RMS) roughness, RRMS, of the enamel before and after biofilm exposure for 3 days displayed a 7-fold increase. Further, the direct effect of chemically induced enamel demineralization using biologically relevant organic acids was shown. Optical profiles of the enamel surface after addition of a 30% lactic acid solution showed a significant alteration in the surface topography with a corresponding increase in respective surface roughness statistics. Similar measurements with 10% citric acid over seconds and minutes give insight into the demineralization process by providing quantitative measures for erosion rates: comparing surface height and roughness as metrics.
The strengths of optical profilometry as an analytical tool for understanding and analyzing biologically relevant processes such as biofilm induced tooth enamel demineralization were demonstrated.
PMCID: PMC3454478  PMID: 19732947
enamel erosion; optical profilometry; biofilm; Streptococcus mutans; enamel demineralization; citric acid; lactic acid; AFM
12.  Oligomerization of the Response Regulator ComE from Streptococcus mutans Is Affected by Phosphorylation 
Journal of Bacteriology  2012;194(5):1127-1135.
We have previously characterized the interactions of the response regulator ComE from Streptococcus mutans and DNA binding sites through DNase I footprinting and electrophoretic mobility shift assay analysis. Since response regulator functions are often affected by their phosphorylation state, we investigated how phosphorylation affects the biochemical function of ComE. Unlike many response regulators, we found that the phosphorylation state of ComE does not likely play a role in DNA binding affinity but rather seems to induce the formation of an oligomeric form of the protein. The role of this oligomerization state for ComE function is discussed.
PMCID: PMC3294772  PMID: 22210762
13.  Dynamics of speB mRNA Transcripts in Streptococcus pyogenes 
Journal of Bacteriology  2012;194(6):1417-1426.
Streptococcus pyogenes (group A streptococcus [GAS]) is a human-specific pathogen that causes a variety of diseases ranging from superficial infections to life-threatening diseases. SpeB, a potent extracellular cysteine proteinase, plays an important role in the pathogenesis of GAS infections. Previous studies show that SpeB expression and activity are controlled at the transcriptional and posttranslational levels, though it had been unclear whether speB was also regulated at the posttranscriptional level. In this study, we examined the growth phase-dependent speB mRNA level and decay using quantitative reverse transcription-PCR (qRT-PCR) and Northern blot analyses. We observed that speB mRNA accumulated rapidly during exponential growth, which occurred concomitantly with an increase in speB mRNA stability. A closer observation revealed that the increased speB mRNA stability was mainly due to progressive acidification. Inactivation of RNase Y, a recently identified endoribonuclease, revealed a role in processing and degradation of speB mRNA. We conclude that the increased speB mRNA stability contributes to the rapid accumulation of speB transcript during growth.
PMCID: PMC3294869  PMID: 22267517
14.  The Role of Hydrogen Peroxide in Environmental Adaptation of Oral Microbial Communities 
Oral streptococci are able to produce growth-inhibiting amounts of hydrogen peroxide (H2O2) as byproduct of aerobic metabolism. Several recent studies showed that the produced H2O2 is not a simple byproduct of metabolism but functions in several aspects of oral bacterial biofilm ecology. First, the release of DNA from cells is closely associated to the production of H2O2 in Streptococcus sanguinis and Streptococcus gordonii. Extracellular DNA is crucial for biofilm development and stabilization and can also serve as source for horizontal gene transfer between oral streptococci. Second, due to the growth inhibiting nature of H2O2, H2O2 compatible species associate with the producers. H2O2 production therefore might help in structuring the initial biofilm development. On the other hand, the oral environment harbors salivary peroxidases that are potent in H2O2 scavenging. Therefore, the effects of biofilm intrinsic H2O2 production might be locally confined. However, taking into account that 80% of initial oral biofilm constituents are streptococci, the influence of H2O2 on biofilm development and environmental adaptation might be under appreciated in current research.
PMCID: PMC3405655  PMID: 22848782
15.  Hydrogen Peroxide-Dependent DNA Release and Transfer of Antibiotic Resistance Genes in Streptococcus gordonii ▿  
Journal of Bacteriology  2011;193(24):6912-6922.
Certain oral streptococci produce H2O2 under aerobic growth conditions to inhibit competing species like Streptococcus mutans. Additionally, H2O2 production causes the release of extracellular DNA (eDNA). eDNA can participate in several important functions: biofilm formation and cell-cell aggregation are supported by eDNA, while eDNA can serve as a nutrient and as an antimicrobial agent by chelating essential cations. eDNA contains DNA fragments of a size that has the potential to transfer genomic information. By using Streptococcus gordonii as a model organism for streptococcal H2O2 production, H2O2-dependent eDNA release was further investigated. Under defined growth conditions, the eDNA release process was shown to be entirely dependent on H2O2. Chromosomal DNA damage seems to be the intrinsic signal for the release, although only actively growing cells were proficient eDNA donors. Interestingly, the process of eDNA production was found to be coupled with the induction of the S. gordonii natural competence system. Consequently, the production of H2O2 triggered the transfer of antibiotic resistance genes. These results suggest that H2O2 is potentially much more than a simple toxic metabolic by-product; rather, its production could serve as an important environmental signal that facilitates species evolution by transfer of genetic information and an increase in the mutation rate.
PMCID: PMC3232836  PMID: 21984796
17.  Characterization of competence and biofilm development of a Streptocccus sanguinis endocarditis isolate 
Molecular oral microbiology  2011;26(2):117-126.
Streptococcus sanguinis is an oral commensal bacterium and endogenous pathogen in the blood, which generally is naturally competent to take up extracellular DNA. Regarded as a stress response, competence development enables S. sanguinis to acquire new genetic material. The sequenced reference strain SK36 encodes and expresses the genes required for competence (com) and uptake of DNA. Isolated from blood cultures of a confirmed case of infective endocarditis, strain 133–79 encodes all necessary com genes but is not transformable under conditions permissive for competence development in SK36. Using synthetic competence-stimulating peptides (sCSP) based on sequences of SK36 and 133–79 comC, both strains developed competence at similar frequencies in cross-transformation experiments. Furthermore, downstream response pathways are similar in strains SK36 and 133–79 since platelet aggregation and biofilm formation appeared unaffected by CSP. Collectively, the data indicate that strains SK36 and 133–79 respond to CSP similarly, strongly suggesting that endogenous production or release of CSP from 133–79 is impaired.
PMCID: PMC3075536  PMID: 21375702
18.  Counteractive Balancing of Transcriptome Expression Involving CodY and CovRS in Streptococcus pyogenes▿† 
Journal of Bacteriology  2011;193(16):4153-4165.
Streptococcus pyogenes (group A streptococcus [GAS]) responds to environmental changes in a manner that results in an adaptive regulation of the transcriptome. The objective of the present study was to understand how two global transcriptional regulators, CodY and CovRS, coordinate the transcriptional network in S. pyogenes. Results from expression microarray data and quantitative reverse transcription-PCR (qRT-PCR) showed that the global regulator CodY controls the expression of about 250 genes, or about 17% of the genome of strain NZ131. Additionally, the codY gene was shown to be negatively autoregulated, with its protein binding directly to the promoter region with a CodY binding site. In further studies, the influence of codY, covRS, and codY-covRS mutations on gene expression was analyzed in growth phase-dependent conditions using C medium, reported to mimic nutritional abundance and famine conditions similar to those found during host GAS infection. Additional biological experiments of several virulence phenotypes, including pilin production, biofilm formation, and NAD glycohydrolase activity, demonstrated the role that both CodY and CovRS play in their regulation. Correlation analysis of the overall data revealed that, in exponentially growing cells, CodY and CovRS act in opposite directions, with CodY stimulating and CovRS repressing a substantial fraction of the core genome, including many virulence factors. This is the first report of counteractive balancing of transcriptome expression by global transcription regulators and provides important insight into how GAS modulates gene expression by integrating important extracellular and intracellular information.
PMCID: PMC3147680  PMID: 21705595
19.  Environmental Influences on Competitive Hydrogen Peroxide Production in Streptococcus gordonii ▿  
Applied and Environmental Microbiology  2011;77(13):4318-4328.
Streptococcus gordonii is an important member of the oral biofilm. One of its phenotypic traits is the production of hydrogen peroxide (H2O2). H2O2 is an antimicrobial component produced by S. gordonii that is able to antagonize the growth of cariogenic Streptococcus mutans. Strategies that modulate H2O2 production in the oral cavity may be useful as a simple therapeutic mechanism to improve oral health, but little is known about the regulation of H2O2 production. The enzyme responsible for H2O2 production is pyruvate oxidase, encoded by spxB. The functional studies of spxB expression and SpxB abundance presented in this report demonstrate a strong dependence on environmental oxygen tension and carbohydrate availability. Carbon catabolite repression (CCR) modulates spxB expression carbohydrate dependently. Catabolite control protein A (CcpA) represses spxB expression by direct binding to the spxB promoter, as shown by electrophoretic mobility shift assays (EMSA). Promoter mutation studies revealed the requirement of two catabolite-responsive elements (CRE) for CcpA-dependent spxB regulation, as evaluated by spxB expression and phenotypic H2O2 production assays. Thus, molecular mechanisms for the control of S. gordonii spxB expression are presented for the first time, demonstrating the possibility of manipulating H2O2 production for increased competitive fitness.
PMCID: PMC3127700  PMID: 21571883
20.  Characterization of DNA Binding Sites of the ComE Response Regulator from Streptococcus mutans▿† 
Journal of Bacteriology  2011;193(14):3642-3652.
In Streptococcus mutans, both competence and bacteriocin production are controlled by ComC and the ComED two-component signal transduction system. Recent studies of S. mutans suggested that purified ComE binds to two 11-bp direct repeats in the nlmC-comC promoter region, where ComE activates nlmC and represses comC. In this work, quantitative binding studies and DNase I footprinting analysis were performed to calculate the equilibrium dissociation constant and further characterize the binding site of ComE. We found that ComE protects sequences inclusive of both direct repeats, has an equilibrium dissociation constant in the nanomolar range, and binds to these two direct repeats cooperatively. Furthermore, similar direct repeats were found upstream of cslAB, comED, comX, ftf, vicRKX, gtfD, gtfB, gtfC, and gbpB. Quantitative binding studies were performed on each of these sequences and showed that only cslAB has a similar specificity and high affinity for ComE as that seen with the upstream region of comC. A mutational analysis of the binding sequences showed that ComE does not require both repeats to bind DNA with high affinity, suggesting that single site sequences in the genome may be targets for ComE-mediated regulation. Based on the mutational analysis and DNase I footprinting analysis, we propose a consensus ComE binding site, TCBTAAAYSGT.
PMCID: PMC3133340  PMID: 21602345
21.  Catabolite Control Protein A Controls Hydrogen Peroxide Production and Cell Death in Streptococcus sanguinis▿  
Journal of Bacteriology  2010;193(2):516-526.
Streptococcus sanguinis is a commensal oral bacterium producing hydrogen peroxide (H2O2) that is dependent on pyruvate oxidase (Spx) activity. In addition to its well-known role in bacterial antagonism during interspecies competition, H2O2 causes cell death in about 10% of the S. sanguinis population. As a consequence of H2O2-induced cell death, largely intact chromosomal DNA is released into the environment. This extracellular DNA (eDNA) contributes to the self-aggregation phenotype under aerobic conditions. To further investigate the regulation of spx gene expression, we assessed the role of catabolite control protein A (CcpA) in spx expression control. We report here that CcpA represses spx expression. An isogenic ΔccpA mutant showed elevated spx expression, increased Spx abundance, and H2O2 production, whereas the wild type did not respond with altered spx expression in the presence of glucose and other carbohydrates. Since H2O2 is directly involved in the release of eDNA and bacterial cell death, the presented data suggest that CcpA is a central control element in this important developmental process in S. sanguinis.
PMCID: PMC3019840  PMID: 21036992
22.  Role of Streptococcus mutans Eukaryotic-Type Serine/Threonine Protein Kinase in Interspecies Interactions with Streptococcus sanguinis 
Archives of oral biology  2010;55(5):385-390.
Interspecies interactions of oral streptococci involve the production and excretion of antimicrobial compounds to compete successfully during colonization. Bacteriocin production by Streptococcus mutans and hydrogen peroxide (H2O2) production by Streptococcus sanguinis have been demonstrated as crucial for the clinical relevant antagonism between both species. A potential target of H2O2 is the cell-envelop of S. mutans. In the present study, the role of cell-envelop associated eukaryotic serine/threonine protein kinase (STPK) in S. mutans during interspecies competition has been investigated.
Allelic replacements via homologous recombination of the STPK encoding gene with a kanamycin resistant determinant has been constructed. The mutant has been screened for the susceptibility towards cell-envelope stress. A previously developed spotting assay was used to simulate interspecies competition.
The STPK- mutant showed an increased susceptibility toward envelop-stress caused by H2O2 and was significantly more inhibited during interspecies competition assays.
S. mutans is able to sense antimicrobial compounds excreted by competing species and can potentially adjust the cell-envelop toward an increased resistance.
PMCID: PMC2879407  PMID: 20381010
23.  Oxygen dependent pyruvate oxidase expression and production in Streptococcus sanguinis 
The objective of this study was to characterize the oxygen dependent regulation of pyruvate oxidase (SpxB) gene expression and protein production in Streptococcus sanguinis (S. sanguinis). SpxB is responsible for the generation of growth-inhibiting amounts of hydrogen peroxide (H2O2) able to antagonize cariogenic Streptococcus mutans (S. mutans). Furthermore, the ecological consequence of H2O2 production was investigated in its self-inhibiting ability towards the producing strain. Expression of spxB was determined with quantitative Real-Time RT-PCR and a fluorescent expression reporter strain. Protein abundance was investigated with FLAG epitope engineered in frame on the C-terminal end of SpxB. Self inhibition was tested with an antagonism plate assay. The expression and protein abundance decreased in cells grown under anaerobic conditions. S. sanguinis was resistant against its own produced H2O2, while cariogenic S. mutans was inhibited in its growth. The results suggest that S. sanguinis produces H2O2 as antimicrobial substance to inhibit susceptible niche competing species like S. mutans during initial biofilm formation, when oxygen availability allows for spxB expression and Spx production.
PMCID: PMC3469881  PMID: 21485312
Streptococcus sanguinis; pyruvate oxidase; oxygen dependent
24.  Systematic Approach to Optimizing Specifically Targeted Antimicrobial Peptides against Streptococcus mutans▿  
Previously we reported a novel strategy of “targeted killing” through the design of narrow-spectrum molecules known as specifically targeted antimicrobial peptides (STAMPs) (R. Eckert et al., Antimicrob. Agents Chemother. 50:3651-3657, 2006; R. Eckert et al., Antimicrob. Agents Chemother. 50:1480-1488, 2006). Construction of these molecules requires the identification and the subsequent utilization of two conjoined yet functionally independent peptide components: the targeting and killing regions. In this study, we sought to design and synthesize a large number of STAMPs targeting Streptococcus mutans, the primary etiologic agent of human dental caries, in order to identify candidate peptides with increased killing speed and selectivity compared with their unmodified precursor antimicrobial peptides (AMPs). We hypothesized that a combinatorial approach, utilizing a set number of AMP, targeting, and linker regions, would be an effective method for the identification of STAMPs with the desired level of activity. STAMPs composed of the Sm6 S. mutans binding peptide and the PL-135 AMP displayed selectivity at MICs after incubation for 18 to 24 h. A STAMP where PL-135 was replaced by the B-33 killing domain exhibited both selectivity and rapid killing within 1 min of exposure and displayed activity against multispecies biofilms grown in the presence of saliva. These results suggest that potent and selective STAMP molecules can be designed and improved via a tunable “building-block” approach.
PMCID: PMC2863653  PMID: 20211885
25.  Influence of a model human defensive peroxidase system on oral streptococcal antagonism 
Microbiology  2009;155(Pt 11):3691-3700.
Streptococcus is a dominant genus in the human oral cavity, making up about 20 % of the more than 800 species of bacteria that have been identified, and about 80 % of the early biofilm colonizers. Oral streptococci include both health-compatible (e.g. Streptococcus gordonii and Streptococcus sanguinis) and pathogenic strains (e.g. the cariogenic Streptococcus mutans). Because the streptococci have similar metabolic requirements, they have developed defence strategies that lead to antagonism (also known as bacterial interference). S. mutans expresses bacteriocins that are cytotoxic toward S. gordonii and S. sanguinis, whereas S. gordonii and S. sanguinis differentially produce H2O2 (under aerobic growth conditions), which is relatively toxic toward S. mutans. Superimposed on the inter-bacterial combat are the effects of the host defensive mechanisms. We report here on the multifarious effects of bovine lactoperoxidase (bLPO) on the antagonism between S. gordonii and S. sanguinis versus S. mutans. Some of the effects are apparently counterproductive with respect to maintaining a health-compatible population of streptococci. For example, the bLPO system (comprised of bLPO+SCN−+H2O2) destroys H2O2, thereby abolishing the ability of S. gordonii and S. sanguinis to inhibit the growth of S. mutans. Furthermore, bLPO protein (with or without its substrate) inhibits bacterial growth in a biofilm assay, but sucrose negates the inhibitory effects of the bLPO protein, thereby facilitating adherence of S. mutans in lieu of S. gordonii and S. sanguinis. Our findings may be relevant to environmental pressures that select early supragingival colonizers.
PMCID: PMC2888128  PMID: 19684069

Results 1-25 (33)