PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Control of Staphylococcal Adhesion to Polymethylmethacrylate and Enhancement of Susceptibility to Antibiotics by Poloxamer 407 
We studied the antiadhesive effect of Poloxamer 407 (P407), together with modifications in the antimicrobial susceptibility of residual adherent staphylococci. Bacterial adherence was markedly inhibited (77% to more than 99.9%) whether polymethylmethacrylate was exposed to P407 before or during the adherence assay. Furthermore, residual adherent staphylococci appeared to be more susceptible to antibiotic activity, suggesting that combination of P407 with antibiotics could be a promising approach to the prevention of infection of foreign material.
PMCID: PMC89822  PMID: 10722521
2.  In Vivo Efficacies of Combinations of β-Lactams, β-Lactamase Inhibitors, and Rifampin against Acinetobacter baumannii in a Mouse Pneumonia Model 
The effects of various regimens containing combinations of β-lactams, β-lactam inhibitor(s), and rifampin were assessed in a recently described mouse model of Acinetobacter baumannii pneumonia (M. L. Joly-Guillou, M. Wolff, J. J. Pocidalo, F. Walker, and C. Carbon, Antimicrob. Agents Chemother. 41:345–351, 1997). Two aspects of the therapeutic response were studied: the kinetics of the bactericidal effect (treatment was initiated 3 h after intratracheal inoculation, and bacterial counts were determined over a 24-h period) and survival (treatment was initiated 8 h after inoculation, and the cumulative mortality rate was assessed on day 5). Two clinical strains were used: a cephalosporinase-producing strain (SAN-94040) and a multiresistant strain (RCH-69). For SAN-94040 and RCH-69, MICs and MBCs (milligrams per liter) were as follows: ticarcillin, 32, 64, 256, and >256, respectively; ticarcillin-clavulanate, 32, 64, and 512, and >512, respectively; imipenem, 0.5, 0.5, 8, and 32, respectively; sulbactam, 0.5, 0.5, 8, and 8, respectively; and rifampin, 8, 8, 4, and 4, respectively. Against SAN-94040, four regimens, i.e., imipenem, sulbactam, imipenem-rifampin, and ticarcillin-clavulanate (at a 25/1 ratio)-sulbactam produced a true bactericidal effect (≥3-log10 reduction of CFU/g of lung). The best survival rate (i.e., 93%) was obtained with the combination of ticarcillin-clavulanate-sulbactam, and regimens containing rifampin provided a survival rate of ≥65%. Against RCH-69, only regimens containing rifampin and the combination of imipenem-sulbactam had a true bactericidal effect. The best survival rates (≥80%) were obtained with regimens containing rifampin and sulbactam. These results suggest that nonclassical combinations of β-lactams, β-lactamase inhibitors, and rifampin should be considered for the treatment of nosocomial pneumonia due to A. baumannii.
PMCID: PMC89287  PMID: 10348761
3.  Molecular epidemiology of Acinetobacter baumannii in different hospitals in Tripoli, Lebanon using blaOXA-51-like sequence based typing 
BMC Microbiology  2015;15:103.
Background
A. baumannii has emerged as an important nosocomial pathogen with an outstanding ability to acquire multidrug resistant mechanisms. In this study, we investigate the molecular epidemiology and carbapenem resistance mechanisms of A. baumannii in Tripoli, Northern Lebanon.
Methods
One hundred sixteen non-duplicate isolates isolated between 2011 and 2013 in different hospitals in Tripoli, Lebanon from Lebanese patients and wounded Syrian patients during Syrian war were studied. Antibiotic susceptibility testing was determined by agar disc diffusion and Etest. Carbapenemase-encoding genes were investigated by PCR. All isolates were typed by blaOXA-51-like sequence based typing (SBT) and 57 isolates were also analysed by MLST using Pasteur’s scheme followed by eBURST analysis.
Results
Of the 116 isolates, 70 (60 %) showed a carbapenem resistance phenotype. The blaOXA-23 with an upstream insertion of ISAba1 was the major carbapenem resistance mechanism and detected in 65 isolates. Five isolates, including four from wounded Syrian patients and one from a Lebanese patient, were positive for blaNDM-1. blaOXA-51-like SBT revealed the presence of 14 variants, where blaOXA-66 was the most common and present in 73 isolates, followed by blaOXA-69 in 20 isolates. MLST analysis identified 17 sequence types (ST) and showed a concordance with blaOXA-51-like SBT. Each clonal complex (CC) had a specific blaOXA-51-like sequence such as CC2, which harboured blaOXA-66 variant, and CC1 harbouring blaOXA-69 variant. NDM-1 producing isolates belonged to ST85 (4 Syrian isolates) and ST25 (1 Lebanese isolate).
Conclusions
Our results showed a successful predominance of international clone 2 with a widespread occurrence of OXA-23 carbapenemase in Lebanese hospitals. These findings emphasise the urgent need of effective measures to control the spread of A. baumannii in this country.
doi:10.1186/s12866-015-0441-5
PMCID: PMC4432822  PMID: 25976451
Acinetobacter baumannii; Lebanon; Carbapenem resistance; blaOXA-51 sequence based typing; MLST; OXA-23; NDM-1
4.  First Report of Endocarditis Caused by a Pseudoclavibacter Species 
Journal of Clinical Microbiology  2014;52(9):3465-3467.
We describe the first case of Pseudoclavibacter species endocarditis in a 44-year-old patient. This genus, rarely isolated from humans, confirms here its role as a human pathogen.
doi:10.1128/JCM.01388-14
PMCID: PMC4313186  PMID: 24989608
5.  Molecular Analysis of Acinetobacter baumannii Strains Isolated in Lebanon Using Four Different Typing Methods 
PLoS ONE  2014;9(12):e115969.
This study analyzed 42 Acinetobacter baumannii strains collected between 2009–2012 from different hospitals in Beyrouth and North Lebanon to better understand the epidemiology and carbapenem resistance mechanisms in our collection and to compare the robustness of pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST), repetitive sequence-based PCR (rep-PCR) and blaOXA-51 sequence-based typing (SBT). Among 31 carbapenem resistant strains, we have detected three carbapenem resistance genes: 28 carried the blaOXA-23 gene, 1 the blaOXA-24 gene and 2 strains the blaOXA-58 gene. This is the first detection of blaOXA-23 and blaOXA-24 in Lebanon. PFGE identified 11 types and was the most discriminating technique followed by rep-PCR (9 types), blaOXA-51 SBT (8 types) and MLST (7 types). The PFGE type A'/ST2 was the dominant genotype in our collection present in Beyrouth and North Lebanon. The clustering agreement between all techniques was measured by adjust Wallace coefficient. An overall agreement has been demonstrated. High values of adjust Wallace coefficient were found with followed combinations: PFGE to predict MLST types  = 100%, PFGE to predict blaOXA-51 SBT = 100%, blaOXA-51 SBT to predict MLST = 100%, MLST to predict blaOXA-51 SBT = 84.7%, rep-PCR to predict MLST = 81.5%, PFGE to predict rep-PCR = 69% and rep-PCR to predict blaOXA-51 SBT = 67.2%. PFGE and MLST are gold standard methods for outbreaks investigation and population structure studies respectively. Otherwise, these two techniques are technically, time and cost demanding. We recommend the use of blaOXA-51 SBT as first typing method to screen isolates and assign them to their corresponding clonal lineages. Repetitive sequence-based PCR is a rapid tool to access outbreaks but careful interpretation of results must be always performed.
doi:10.1371/journal.pone.0115969
PMCID: PMC4277430  PMID: 25541711
6.  Differences in Acinetobacter baumannii Strains and Host Innate Immune Response Determine Morbidity and Mortality in Experimental Pneumonia 
PLoS ONE  2012;7(2):e30673.
Despite many reports documenting its epidemicity, little is known on the interaction of Acinetobacter baumannii with its host. To deepen our insight into this relationship, we studied persistence of and host response to different A. baumannii strains including representatives of the European (EU) clones I–III in a mouse pneumonia model. Neutropenic mice were inoculated intratracheally with five A. baumannii strains and an A. junii strain and at several days morbidity, mortality, bacterial counts, airway inflammation, and chemo- and cytokine production in lungs and blood were determined. A. baumannii RUH875 and RUH134 (EU clone I and II, respectively) and sporadic strain LUH8326 resulted in high morbidity/mortality, whereas A. baumannii LUH5875 (EU clone III, which is less widespread than clone I and II) caused less symptoms. A. baumannii type strain RUH3023T and A. junii LUH5851 did not cause disease. All strains, except A. baumannii RUH3023T and A. junii LUH5851, survived and multiplied in the lungs for several days. Morbidity and mortality were associated with the severity of lung pathology and a specific immune response characterized by low levels of anti-inflammatory (IL-10) and specific pro-inflammatory (IL-12p40 and IL-23) cytokines at the first day of infection. Altogether, a striking difference in behaviour among the A. baumannii strains was observed with the clone I and II strains being most virulent, whereas the A. baumannii type strain, which is frequently used in virulence studies appeared harmless.
doi:10.1371/journal.pone.0030673
PMCID: PMC3275605  PMID: 22347396
7.  Comparative in vitro activity of Meropenem, Imipenem and Piperacillin/tazobactam against 1071 clinical isolates using 2 different methods: a French multicentre study 
Background
Meropenem is a carbapenem that has an excellent activity against many gram-positive and gram-negative aerobic, facultative, and anaerobic bacteria. The major objective of the present study was to assess the in vitro activity of meropenem compared to imipenem and piperacillin/tazobactam, against 1071 non-repetitive isolates collected from patients with bacteremia (55%), pneumonia (29%), peritonitis (12%) and wound infections (3%), in 15 French hospitals in 2006. The secondary aim of the study was to compare the results of routinely testings and those obtained by a referent laboratory.
Method
Susceptibility testing and Minimum Inhibitory Concentrations (MICs) of meropenem, imipenem and piperacillin/tazobactam were determined locally by Etest method. Susceptibility to meropenem was confirmed at a central laboratory by disc diffusion method and MICs determined by agar dilution method for meropenem, imipenem and piperacillin/tazobactam.
Results
Cumulative susceptibility rates against Escherichia coli were, meropenem and imipenem: 100% and piperacillin/tazobactam: 90%. Against other Enterobacteriaceae, the rates were meropenem: 99%, imipenem: 98% and piperacillin/tazobactam: 90%. All Staphylococci, Streptococci and anaerobes were susceptible to the three antibiotics. Against non fermeters, meropenem was active on 84-94% of the strains, imipenem on 84-98% of the strains and piperacillin/tazobactam on 90-100% of the strains.
Conclusions
Compared to imipenem, meropenem displays lower MICs against Enterobacteriaceae, Escherichia coli and Pseudomonas aeruginosa. Except for non fermenters, MICs90 of carbapenems were <4 mg/L. Piperacillin/tazobactam was less active against Enterobacteriaceae and Acinetobacter but not P. aeruginosa. Some discrepancies were noted between MICs determined by Etest accross centres and MICs determined by agar dilution method at the central laboratory. Discrepancies were more common for imipenem testing and more frequently related to a few centres. Overall MICs determined by Etest were in general higher (0.5 log to 1 log fold) than MICs by agar dilution.
doi:10.1186/1471-2334-10-72
PMCID: PMC2845586  PMID: 20298555
8.  High Content Screening Identifies Decaprenyl-Phosphoribose 2′ Epimerase as a Target for Intracellular Antimycobacterial Inhibitors 
PLoS Pathogens  2009;5(10):e1000645.
A critical feature of Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), is its ability to survive and multiply within macrophages, making these host cells an ideal niche for persisting microbes. Killing the intracellular tubercle bacilli is a key requirement for efficient tuberculosis treatment, yet identifying potent inhibitors has been hampered by labor-intensive techniques and lack of validated targets. Here, we present the development of a phenotypic cell-based assay that uses automated confocal fluorescence microscopy for high throughput screening of chemicals that interfere with the replication of M. tuberculosis within macrophages. Screening a library of 57,000 small molecules led to the identification of 135 active compounds with potent intracellular anti-mycobacterial efficacy and no host cell toxicity. Among these, the dinitrobenzamide derivatives (DNB) showed high activity against M. tuberculosis, including extensively drug resistant (XDR) strains. More importantly, we demonstrate that incubation of M. tuberculosis with DNB inhibited the formation of both lipoarabinomannan and arabinogalactan, attributable to the inhibition of decaprenyl-phospho-arabinose synthesis catalyzed by the decaprenyl-phosphoribose 2′ epimerase DprE1/DprE2. Inhibition of this new target will likely contribute to new therapeutic solutions against emerging XDR-TB. Beyond validating the high throughput/content screening approach, our results open new avenues for finding the next generation of antimicrobials.
Author Summary
Tuberculosis is still a major threat to global health. The disease in humans is caused by a bacterium, Mycobacterium tuberculosis, and treatment of an infected individual requires more than six months of chemotherapy. Because such a long course of treatment is required, compliance is low, which can result in the development of multidrug resistant strains (MDR-TB) and even extremely resistant strains (XDR-TB). Identifying new drug targets and potential lead therapeutic compounds are needed to combat MDR-XDR-TB. We developed a new type of assay based on the visualization of mycobacterium replication within host cells and applied it for the search of compounds that are able to chase the pathogen from its hideout. As a result, we found 20 new series of drug candidates that are effective against the bacilli in its hiding place, potentially addressing a crucial aspect in the resilience of the disease. We also showed that one series of compounds acts by inhibiting a key enzyme required for the synthesis of an essential component from the mycobacterial cell wall that is not targeted by any of the commercially available antituberculosis drugs. Altogether, our results pave the way for development of the next generation of antibacterial agents.
doi:10.1371/journal.ppat.1000645
PMCID: PMC2763345  PMID: 19876393
9.  Nucleotide Sequence of the blaRTG-2 (CARB-5) Gene and Phylogeny of a New Group of Carbenicillinases 
We determined the nucleotide sequence of the bla gene for the Acinetobacter calcoaceticus β-lactamase previously described as CARB-5. Alignment of the deduced amino acid sequence with those of known β-lactamases revealed that CARB-5 possesses an RTG triad in box VII, as described for the Proteus mirabilis GN79 enzyme, instead of the RSG consensus characteristic of the other carbenicillinases. Phylogenetic studies showed that these RTG enzymes constitute a new, separate group, possibly ancestors of the carbenicillinase family.
PMCID: PMC89816  PMID: 10722515

Results 1-9 (9)