Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Characterization of blaOXA-143 Variants in Acinetobacter baumannii and Acinetobacter pittii 
The acquired carbapenem-hydrolyzing oxacillinase (OXA) OXA-143 has thus far been detected only in Acinetobacter baumannii isolates from Brazil. The aim of this study was to characterize three OXA-143 variants: OXA-231 and OXA-253 from carbapenem-resistant A. baumannii isolates and OXA-255 in a carbapenem-susceptible Acinetobacter pittii isolate originating from Brazil, Honduras, and the United States, respectively. The 5′ rapid amplification of cDNA ends (RACE) technique identified the same transcription initiation site for all blaOXA-143-like genes and revealed differences in the putative promoter regions. However, all cloned OXA-143 variants conferred carbapenem resistance on A. baumannii ATCC 17978 and OXA-255 conferred carbapenem resistance on A. pittii SH024, which was correlated with blaOXA-255 gene expression. This is the first description of OXA-143-like outside A. baumannii. Detection of OXA-143-like in the United States and Honduras indicates its dissemination through the American continent.
PMCID: PMC3993222  PMID: 24566181
2.  OXA-235, a Novel Class D β-Lactamase Involved in Resistance to Carbapenems in Acinetobacter baumannii 
We investigated the mechanism of carbapenem resistance in 10 Acinetobacter baumannii strains isolated from the United States and Mexico between 2005 and 2009. The detection of known metallo-β-lactamase or carbapenem-hydrolyzing oxacillinase (OXA) genes by PCR was negative. The presence of plasmid-encoded carbapenem resistance genes was investigated by transformation of A. baumannii ATCC 17978. Shotgun cloning experiments and sequencing were performed, followed by the expression of a novel β-lactamase in A. baumannii. Three novel OXA enzymes were identified, OXA-235 in 8 isolates and the amino acid variants OXA-236 (Glu173-Val) and OXA-237 (Asp208-Gly) in 1 isolate each. The deduced amino acid sequences shared 85% identity with OXA-134, 54% to 57% identities with the acquired OXA-23, OXA-24, OXA-58, and OXA-143, and 56% identity with the intrinsic OXA-51 and, thus, represent a novel subclass of OXA. The expression of OXA-235 in A. baumannii led to reduced carbapenem susceptibility, while cephalosporin MICs were unaffected. Genetic analysis revealed that blaOXA-235, blaOXA-236, and blaOXA-237 were bracketed between two ISAba1 insertion sequences. In addition, the presence of these acquired β-lactamase genes might result from a transposition-mediated mechanism. This highlights the propensity of A. baumannii to acquire multiple carbapenem resistance determinants.
PMCID: PMC3632948  PMID: 23439638
3.  Interlaboratory reproducibility of DiversiLab rep-PCR typing and clustering of Acinetobacter baumannii isolates 
Journal of Medical Microbiology  2012;61(Pt 1):137-141.
We have investigated the reproducibility of DiversiLab rep-PCR fingerprints between two laboratories with the aim of determining if the fingerprints and clustering are laboratory-specific or portable. One-hundred non-duplicate Acinetobacter baumannii isolates were used in this study. DNA isolation and rep-PCR were each performed separately in two laboratories and rep-PCR patterns generated in laboratory A were compared with those from laboratory B. Twelve A. baumannii isolates processed in laboratory A showed ≥98 % pattern similarity with the corresponding 12 isolates tested in laboratory B and were considered identical. Sixty-four isolates showed 95–97.9 % similarity with their corresponding isolates. Twenty-three isolates showed 90–94 % similarity with the corresponding isolates, while one isolate showed only 87.4 % similarity. However, intra-laboratory clustering was conserved: isolates that clustered in laboratory A also clustered in laboratory B. While clustering was conserved and reproducible at two different laboratories, demonstrating the robustness of rep-PCR, interlaboratory comparison of individual isolate fingerprints showed more variability. This comparison allows conclusions regarding clonality to be reached independent of the laboratory where the analysis is performed.
PMCID: PMC3347881  PMID: 21903821
4.  Association between β-Lactamase-Encoding blaOXA-51 Variants and DiversiLab Rep-PCR-Based Typing of Acinetobacter baumannii Isolates 
Journal of Clinical Microbiology  2012;50(6):1900-1904.
This study investigated the correlation between blaOXA-51 variants and Acinetobacter baumannii worldwide clonal lineages 1 to 8 (WW1 to -8). The blaOXA-51-like genes of 102 A. baumannii isolates were sequenced. Using DiversiLab repetitive-sequence-based PCR (rep-PCR) typing, 92 of these isolates had previously been assigned to WW1 to -8 and 10 were unclustered. Clustering of DNA sequences was performed using the neighbor-joining method and the Jukes-Cantor phylogenetic correction. blaOXA-51 variants were in good correlation with DiversiLab-defined clonal lineages. Sequence-based typing of blaOXA-51 variants has the potential to be applied for epidemiologic characterization of A. baumannii and to identify worldwide clonal lineages 1 to 8.
PMCID: PMC3372099  PMID: 22422849
5.  Molecular Epidemiology of Acinetobacter baumannii Bloodstream Isolates Obtained in the United States from 1995 to 2004 Using rep-PCR and Multilocus Sequence Typing 
Journal of Clinical Microbiology  2012;50(11):3493-3500.
Using a repetitive-sequence-based (rep)-PCR (DiversiLab), we have molecularly typed Acinetobacter nosocomial bloodstream isolates (Acinetobacter baumannii [n = 187], Acinetobacter pittii [n = 23], and Acinetobacter nosocomialis [n = 61]) obtained from patients hospitalized in U.S. hospitals over a 10-year period (1995-2004) during a nationwide surveillance study (Surveillance and Control of Pathogens of Epidemiological Importance [SCOPE]). Patterns of A. baumannii rep-PCR were compared to those of previously identified international clonal lineages (ICs) and were further investigated by multilocus sequence typing (MLST) to compare the two typing methods. Forty-seven of the A. baumannii isolates clustered with the previously defined IC 2. ICs 1, 3, 6, and 7 were also detected. The remaining 81 isolates were unrelated to the described ICs. In contrast, A. pittii and A. nosocomialis isolates were more heterogeneous, as determined by rep-PCR. Our MLST results were in good correlation with the rep-PCR clusters. Our study confirms previous data indicating the predominance of a few major clonal A. baumannii lineages in the United States, particularly IC 2. The presence in the United States of A. baumannii ICs 1, 2, and 3 from as early as 1995 suggests that global dissemination of these lineages was an early event.
PMCID: PMC3486219  PMID: 22895032
6.  Characterization of RarA, a Novel AraC Family Multidrug Resistance Regulator in Klebsiella pneumoniae 
Transcriptional regulators, such as SoxS, RamA, MarA, and Rob, which upregulate the AcrAB efflux pump, have been shown to be associated with multidrug resistance in clinically relevant Gram-negative bacteria. In addition to the multidrug resistance phenotype, these regulators have also been shown to play a role in the cellular metabolism and possibly the virulence potential of microbial cells. As such, the increased expression of these proteins is likely to cause pleiotropic phenotypes. Klebsiella pneumoniae is a major nosocomial pathogen which can express the SoxS, MarA, Rob, and RamA proteins, and the accompanying paper shows that the increased transcription of ramA is associated with tigecycline resistance (M. Veleba and T. Schneiders, Antimicrob. Agents Chemother. 56:4466–4467, 2012). Bioinformatic analyses of the available Klebsiella genome sequences show that an additional AraC-type regulator is encoded chromosomally. In this work, we characterize this novel AraC-type regulator, hereby called RarA (Regulator of antibiotic resistance A), which is encoded in K. pneumoniae, Enterobacter sp. 638, Serratia proteamaculans 568, and Enterobacter cloacae. We show that the overexpression of rarA results in a multidrug resistance phenotype which requires a functional AcrAB efflux pump but is independent of the other AraC regulators. Quantitative real-time PCR experiments show that rarA (MGH 78578 KPN_02968) and its neighboring efflux pump operon oqxAB (KPN_02969_02970) are consistently upregulated in clinical isolates collected from various geographical locations (Chile, Turkey, and Germany). Our results suggest that rarA overexpression upregulates the oqxAB efflux pump. Additionally, it appears that oqxR, encoding a GntR-type regulator adjacent to the oqxAB operon, is able to downregulate the expression of the oqxAB efflux pump, where OqxR complementation resulted in reductions to olaquindox MICs.
PMCID: PMC3421627  PMID: 22644028
7.  In Vivo Selection of a Missense Mutation in adeR and Conversion of the Novel blaOXA-164 Gene into blaOXA-58 in Carbapenem-Resistant Acinetobacter baumannii Isolates from a Hospitalized Patient▿  
Antimicrobial Agents and Chemotherapy  2010;54(12):5021-5027.
The mechanism of stepwise acquired multidrug resistance in Acinetobacter baumannii isolates from a hospitalized patient was investigated. Thirteen consecutive multidrug-resistant isolates were recovered from the same patient over a 2-month period. The Vitek 2 system identified the isolates as meropenem-sensitive Acinetobacter lwoffii; however, molecular identification showed that the isolates were A. baumannii. Etest revealed that the isolates were meropenem resistant. The presence of oxacillinase (OXA)-type enzymes were investigated by sequencing. The clonal relatedness of isolates was assessed by pulsed-field gel electrophoresis (PFGE). Expression of the genes encoding the efflux pumps AdeB and AdeJ was performed by semiquantitative real-time reverse transcription-PCR (qRT-PCR). The adeRS two-component system was sequenced. All isolates had identical PFGE fingerprints, suggesting clonal identity. The first six isolates were positive for the novel blaOXA-164 gene. The following seven isolates, recovered after treatment with a combination of meropenem, amikacin, ciprofloxacin, and co-trimoxazole showed an increase of >7-fold in adeB mRNA transcripts and a missense mutation in blaOXA-164, converting it to blaOXA-58. Sequencing revealed a novel mutation in adeR. These data illustrate how A. baumannii can adapt during antimicrobial therapy, leading to increased antimicrobial resistance.
PMCID: PMC2981280  PMID: 20921306
8.  gyrB Multiplex PCR To Differentiate between Acinetobacter calcoaceticus and Acinetobacter Genomic Species 3 ▿  
Journal of Clinical Microbiology  2010;48(12):4592-4594.
A previously established multiplex PCR that identifies to the species level Acinetobacter baumannii and Acinetobacter genomic species 13TU (GS13TU) was expanded to include Acinetobacter calcoaceticus and Acinetobacter genomic species 3.
PMCID: PMC3008493  PMID: 20881170
9.  Activity of the Investigational Fluoroquinolone Finafloxacin against Ciprofloxacin-Sensitive and -Resistant Acinetobacter baumannii Isolates ▿  
This study compared the activity of finafloxacin, a novel fluoroquinolone which shows enhanced activity under acidic pH, and that of ciprofloxacin against Acinetobacter baumannii under standard conditions (pH 7.2) and at a pH of 5.8. Overall, finafloxacin demonstrated superior activity to ciprofloxacin under acidic conditions. Furthermore, finafloxacin showed comparable activity to ciprofloxacin at pH 7.2. Hence, finafloxacin could be a promising new antimicrobial agent for the treatment of A. baumannii infections at acidic body compartments.
PMCID: PMC2849356  PMID: 20100879
10.  OXA-143, a Novel Carbapenem-Hydrolyzing Class D β-Lactamase in Acinetobacter baumannii▿  
Antimicrobial Agents and Chemotherapy  2009;53(12):5035-5038.
A carbapenem-resistant Acinetobacter baumannii strain was isolated in Brazil in 2004 in which no known carbapenemase gene was detected by PCR. Cloning experiments, followed by expression in Escherichia coli, gave an E. coli recombinant strain expressing a novel carbapenem-hydrolyzing class D β-lactamase (CHDL). OXA-143 showed 88% amino acid sequence identity with OXA-40, 63% identity with OXA-23, and 52% identity with OXA-58. It hydrolyzed penicillins, oxacillin, meropenem, and imipenem but not expanded-spectrum cephalosporins. The blaOXA-143 gene was located on a ca. 30-kb plasmid. After transformation into reference strain A. baumannii ATCC 19606, it conferred resistance to carbapenems. Analysis of the genetic environment of blaOXA-143 revealed that it was associated with neither insertion sequences nor integron structures. However, it was bracketed by similar replicase-encoding genes at both ends, suggesting acquisition through a homologous recombination process. This study identified a novel class D β-lactamase involved in carbapenem resistance in A. baumannii. This enzyme is the first member of a novel subgroup of CHDLs whose prevalence remains to be determined.
PMCID: PMC2786334  PMID: 19770279
11.  Differential Expression of ccrA in Methicillin-Resistant Staphylococcus aureus Strains Carrying Staphylococcal Cassette Chromosome mec Type II and IVa Elements▿  
Antimicrobial Agents and Chemotherapy  2009;53(10):4556-4558.
Excision of staphylococcal cassette chromosome mec (SCCmec) is mediated through the ccrA- and -B-encoded recombinases. We investigated the effects of different antimicrobial agents on ccrA expression by using a ccrA::lacZ fusion and reverse transcription-PCR with methicillin (meticillin)-resistant Staphylococcus aureus strains MW2 (SCCmec IVa) and N315 (SCCmec II). Upregulation of ccrA was observed upon exposure to β-lactam antibiotics. Vancomycin increased ccrA expression in MW2 but had no effect on N315. Vancomycin may contribute to the transfer of SCCmec IVa but have no effect in SCCmec II.
PMCID: PMC2764196  PMID: 19596884
12.  In Vitro Activities of the β-Lactamase Inhibitors Clavulanic Acid, Sulbactam, and Tazobactam Alone or in Combination with β-Lactams against Epidemiologically Characterized Multidrug-Resistant Acinetobacter baumannii Strains 
Acinetobacter baumannii is an important nosocomial pathogen usually in the context of serious underlying disease. Multidrug resistance in these organisms is frequent. The β-lactamase inhibitors clavulanic acid, sulbactam, and tazobactam have intrinsic activity against Acinetobacter strains. To evaluate their potential therapeutic usefulness, we determined the in vitro activity of ampicillin, sulbactam, ampicillin-sulbactam, cefoperazone, cefoperazone-sulbactam, piperacillin, piperacillin-sulbactam, tazobactam, piperacillin-tazobactam, amoxicillin, clavulanic acid, amoxicillin-clavulanic acid, ticarcillin, and ticarcillin-clavulanic acid against multidrug-resistant A. baumannii. All isolates were epidemiologically characterized by RAPD [random(ly) amplified polymorphic DNA] analysis and/or pulsed-field gel electrophoresis and represented different strain types, including sporadic strains, as well as outbreak-related strains. The MICs were determined by agar dilution on Mueller-Hinton agar (using fixed concentrations, as well as fixed ratios for β-lactamase inhibitors) and the E-test. The majority of E-test results were within two dilutions of those recorded by agar dilution, with the exception of piperacillin-tazobactam. Sulbactam was superior to clavulanic acid and tazobactam and may represent an alternative treatment option for infections due to multiresistant A. baumannii strains. β-Lactamase inhibitors have intrinsic activity but do not enhance activity of β-lactams against A. baumannii. Testing with the inhibitor added at a fixed concentration as recommended for piperacillin-tazobactam and ticarcillin-clavulanic acid by the National Committee for Clinical Laboratory Standards may falsely suggest high activity or gives uninterpretable results due to trailing. If combinations are used for testing, fixed ratios may give more useful results.
PMCID: PMC400525  PMID: 15105109

Results 1-12 (12)