PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Mechanism-Based Pharmacodynamic Models of Fluoroquinolone Resistance in Staphylococcus aureus 
Pharmacodynamic modeling from earlier experiments in which two ciprofloxacin-susceptible Staphylococcus aureus strains and their corresponding resistant grlA mutants were exposed to a series of ciprofloxacin (J. J. Campion, P. J. McNamara, and M. E. Evans, Antimicrob. Agents Chemother. 49:209-219, 2005) and levofloxacin (J. J. Campion et al., Antimicrob. Agents Chemother. 49:2189-2199, 2005) pharmacokinetic profiles in an in vitro system indicated that the subpopulation-specific estimated maximal killing rate constants were similar for both agents, suggesting a common mechanism of action. We propose two novel pharmacodynamic models that assign mechanisms of action to fluoroquinolones (growth inhibition or death stimulation) and compare the abilities of these models and two other maximum effect models (net effect and MIC based) to describe and predict the changes in the population dynamics observed during our previous in vitro system experiments with ciprofloxacin. A high correlation between predicted and observed viable counts was observed for all models, but the best fits, as assessed by diagnostic tests, and the most precise parameter estimates were obtained with the growth inhibition and net effect models. All models, except the death stimulation model, correctly predicted that resistant subpopulations would not emerge when a high-density culture was exposed to a high initial concentration designed to rapidly eradicate low-level-resistant grlA mutants. Additional experiments are necessary to elucidate which of the proposed mechanistic models best characterizes the antibacterial effects of fluoroquinolone antimicrobial agents.
doi:10.1128/AAC.00736-05
PMCID: PMC1563538  PMID: 16940088
2.  Pharmacodynamic Modeling of the Evolution of Levofloxacin Resistance in Staphylococcus aureus 
Previously, we demonstrated the importance of low-level-resistant variants to the evolution of resistance in Staphylococcus aureus exposed to ciprofloxacin in an in vitro system and developed a pharmacodynamic model which predicted the emergence of resistance. Here, we examine and model the evolution of resistance to levofloxacin in S. aureus exposed to simulated levofloxacin pharmacokinetic profiles. Enrichment of subpopulations with mutations in grlA and low-level resistance varied with levofloxacin exposure. A regimen producing average steady-state concentrations (Cavg ss) just above the MIC selected grlA mutants with up to 16-fold increases in the MIC and often additional mutations in grlA/grlB and gyrA. A regimen providing Cavg ss between the MIC and the mutant prevention concentration (MPC) suppressed bacterial numbers to the limit of detection and prevented the appearance of bacteria with additional mutations or high-level resistance. Regimens producing Cavg ss above the MPC appeared to eradicate low-level-resistant variants in the cultures and prevent the emergence of resistance. There was no relationship between the time concentrations remained between the MIC and the MPC and the degree of resistance or the presence or type of mutations that appeared in grlA/B or gyrA. Our pharmacodynamic model described the growth and levofloxacin killing of the parent strains and the most resistant grlA mutants in the starting cultures and correctly predicted conditions that enrich subpopulations with low-level resistance. These findings suggest that the pharmacodynamic model has general applicability for describing fluoroquinolone resistance in S. aureus and further demonstrate the importance of low-level-resistant variants to the evolution of resistance.
doi:10.1128/AAC.49.6.2189-2199.2005
PMCID: PMC1140504  PMID: 15917512
3.  Pharmacodynamic Modeling of Ciprofloxacin Resistance in Staphylococcus aureus 
Three pharmacodynamic models of increasing complexity, designed for two subpopulations of bacteria with different susceptibilities, were developed to describe and predict the evolution of resistance to ciprofloxacin in Staphylococcus aureus by using pharmacokinetic, viable count, subpopulation, and resistance mechanism data obtained from in vitro system experiments. A two-population model with unique growth and killing rate constants for the ciprofloxacin-susceptible and -resistant subpopulations best described the initial killing and subsequent regrowth patterns observed. The model correctly described the enrichment of subpopulations with low-level resistance in the parent cultures but did not identify a relationship between the time ciprofloxacin concentrations were in the mutant selection window (the interval between the MIC and the mutant prevention concentration) and the enrichment of these subpopulations. The model confirmed the importance of resistant variants to the emergence of resistance by successfully predicting that resistant subpopulations would not emerge when a low-density culture, with a low probability of mutants, was exposed to a clinical dosing regimen or when a high-density culture, with a higher probability of mutants, was exposed to a transient high initial concentration designed to rapidly eradicate low-level resistant grlA mutants. The model, however, did not predict or explain the origin of variants with higher levels of resistance that appeared and became the predominant subpopulation during some experiments or the persistence of susceptible bacteria in other experiments where resistance did not emerge. Continued evaluation of the present two-population pharmacodynamic model and development of alternative models is warranted.
doi:10.1128/AAC.49.1.209-219.2005
PMCID: PMC538881  PMID: 15616298
4.  Evolution of Ciprofloxacin-Resistant Staphylococcus aureus in In Vitro Pharmacokinetic Environments 
Antimicrobial Agents and Chemotherapy  2004;48(12):4733-4744.
The development of novel antibacterial agents is decreasing despite increasing resistance to presently available agents among common pathogens. Insights into relationships between pharmacodynamics and resistance may provide ways to optimize the use of existing agents. The evolution of resistance was examined in two ciprofloxacin-susceptible Staphylococcus aureus strains exposed to in vitro-simulated clinical and experimental ciprofloxacin pharmacokinetic profiles for 96 h. As the average steady-state concentration (Cavg ss) increased, the rate of killing approached a maximum, and the rate of regrowth decreased. The enrichment of subpopulations with mutations in grlA and low-level ciprofloxacin resistance also varied depending on the pharmacokinetic environment. A regimen producing values for Cavg ss slightly above the MIC selected resistant variants with grlA mutations that did not evolve to higher levels of resistance. Clinical regimens which provided values for Cavg ss intermediate to the MIC and mutant prevention concentration (MPC) resulted in the emergence of subpopulations with gyrA mutations and higher levels of resistance. A regimen producing values for Cavg ss close to the MPC selected grlA mutants, but the appearance of subpopulations with higher levels of resistance was diminished. A regimen designed to maintain ciprofloxacin concentrations entirely above the MPC appeared to eradicate low-level resistant variants in the inoculum and prevent the emergence of higher levels of resistance. There was no relationship between the time that ciprofloxacin concentrations remained between the MIC and the MPC and the degree of resistance or the presence or type of ciprofloxacin-resistance mutations that appeared in grlA or gyrA. Regimens designed to eradicate low-level resistant variants in S. aureus populations may prevent the emergence of higher levels of fluoroquinolone resistance.
doi:10.1128/AAC.48.12.4733-4744.2004
PMCID: PMC529206  PMID: 15561851
6.  Comparison of the Staph-Ident System with a Conventional Method for Species Identification of Urine and Blood Isolates of Coagulase-Negative Staphylococci 
Journal of Clinical Microbiology  1983;17(3):516-520.
The Staph-Ident system (Analytab Products) for species identification of coagulase-negative staphylococci was compared with the conventional method of Kloos and Schleifer (21). A total of 101 clinical isolates from urine cultures and 95 clinical isolates from blood cultures were studied: overall agreement between the two methods was 86%. We concluded that the Staph-Ident system is a practical test for most clinical microbiology laboratories and that results obtained from this rapid test are comparable to those obtained from the more cumbersome conventional method. Additional investigations are needed to determine the clinical relevance of such species identification.
PMCID: PMC272677  PMID: 6841586

Results 1-6 (6)