Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Novel Carbapenem Antibiotics for Parenteral and Oral Applications: In Vitro and In Vivo Activities of 2-Aryl Carbapenems and Their Pharmacokinetics in Laboratory Animals 
SM-295291 and SM-369926 are new parenteral 2-aryl carbapenems with strong activity against major causative pathogens of community-acquired infections such as methicillin-susceptible Staphylococcus aureus, Streptococcus pneumoniae (including penicillin-resistant strains), Streptococcus pyogenes, Enterococcus faecalis, Klebsiella pneumoniae, Moraxella catarrhalis, Haemophilus influenzae (including β-lactamase-negative ampicillin-resistant strains), and Neisseria gonorrhoeae (including ciprofloxacin-resistant strains), with MIC90s of ≤1 μg/ml. Unlike tebipenem (MIC50, 8 μg/ml), SM-295291 and SM-369926 had no activity against hospital pathogens such as Pseudomonas aeruginosa (MIC50, ≥128 μg/ml). The bactericidal activities of SM-295291 and SM-369926 against penicillin-resistant S. pneumoniae and β-lactamase-negative ampicillin-resistant H. influenzae were equal or superior to that of tebipenem and greater than that of cefditoren. The therapeutic efficacies of intravenous administrations of SM-295291 and SM-369926 against experimentally induced infections in mice caused by penicillin-resistant S. pneumoniae and β-lactamase-negative ampicillin-resistant H. influenzae were equal or superior to that of tebipenem and greater than that of cefditoren, respectively, reflecting their in vitro activities. SM-295291 and SM-369926 showed intravenous pharmacokinetics similar to those of meropenem in terms of half-life in monkeys (0.4 h) and were stable against human dehydropeptidase I. SM-368589 and SM-375769, which are medoxomil esters of SM-295291 and SM-369926, respectively, showed good oral bioavailability in rats, dogs, and monkeys (4.2 to 62.3%). Thus, 2-aryl carbapenems are promising candidates that show an ideal broad spectrum for the treatment of community-acquired infections, including infections caused by penicillin-resistant S. pneumoniae and β-lactamase-negative ampicillin-resistant H. influenzae, have low selective pressure on antipseudomonal carbapenem-resistant nosocomial pathogens, and allow parenteral, oral, and switch therapies.
PMCID: PMC3553697  PMID: 23147735
2.  Pharmacodynamics of SMP-601 (PTZ601) against Vancomycin-Resistant Enterococcus faecium and Methicillin-Resistant Staphylococcus aureus in Neutropenic Murine Thigh Infection Models▿  
SMP-601 (also known as PTZ601, PZ-601, or SM-216601) is a novel parenteral carbapenem with potent activity against multidrug-resistant gram-positive pathogens, including vancomycin-resistant Enterococcus faecium (VREF) and methicillin-resistant Staphylococcus aureus (MRSA). The pharmacodynamics of SMP-601 against VREF and MRSA were investigated in neutropenic murine thigh infection models. The percentage of the dosing interval that the unbound SMP-601 concentration exceeded the MIC (f%T>MIC) was the pharmacokinetic-pharmacodynamic parameter that correlated most closely with efficacy with R2 values of 0.81 to 0.84 for two strains of VREF and 0.92 to 0.93 for two strains of MRSA, whereas the R2 values for the area under the concentration-time curve from 0 to 24 h divided by the MIC were 0.12 to 0.89, and the R2 values for the peak level divided by the MIC were 0 to 0.22. The f%T>MIC levels required for static or killing efficacy against two strains of VREF (9 to 19%) apparently were lower than those against two strains of MRSA (23 to 37%). These results suggested that SMP-601 showed time-dependent in vivo efficacy against VREF and MRSA, and SMP-601 had a sufficient therapeutic effect against VREF infections at lower exposure conditions compared to those for with MRSA infections.
PMCID: PMC2715632  PMID: 19487438
3.  In Vitro and In Vivo Antibacterial Activities of SM-216601, a New Broad-Spectrum Parenteral Carbapenem 
Antimicrobial Agents and Chemotherapy  2005;49(10):4185-4196.
SM-216601 is a novel parenteral 1β-methylcarbapenem. In agar dilution susceptibility testing, the MIC of SM-216601 for 90% of the methicillin-resistant Staphylococcus aureus (MRSA) strains tested (MIC90) was 2 μg/ml, which was comparable to those of vancomycin and linezolid. SM-216601 was also very potent against Enterococcus faecium, including vancomycin-resistant strains (MIC90 = 8 μg/ml). SM-216601 exhibited potent activity against penicillin-resistant Streptococcus pneumoniae, ampicillin-resistant Haemophilus influenzae, Moraxella catarrhalis, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis, with MIC90s of less than 0.5 μg/ml, and intermediate activity against Citrobacter freundii, Enterobacter cloacae, Serratia marcescens, and Pseudomonas aeruginosa. The therapeutic efficacy of SM-216601 against experimentally induced infections in mice caused by S. aureus, E. faecium, E. coli, and P. aeruginosa reflected its in vitro activity and plasma level. Thus, SM-216601 is a promising candidate for nosocomial bacterial infections caused by a wide range of gram-positive and gram-negative bacteria, including multiresistant pathogens.
PMCID: PMC1251534  PMID: 16189097
4.  Functional Analysis of the Active Site of a Metallo-β-Lactamase Proliferating in Japan 
An R-plasmid-mediated metallo-β-lactamase was found in Klebsiella pneumoniae DK4 isolated in Japan in 1991. The nucleotide sequence of its structural gene revealed that the β-lactamase termed DK4 was identical to the IMP-1 metallo-β-lactamase which was mediated by a chromosomal gene of Serratia marcescens TN9106 isolated in Japan in 1991 (E. Osano et al., Antimicrob. Agents Chemother. 38:71–78, 1994). The dose effect of DK4 β-lactamase production on the resistance levels indicated a significant contribution of the enzyme to bacterial resistance to all the β-lactams except monobactams. The enzymatic characteristics of the DK4 β-lactamase and its kinetic parameters for nine β-lactams were examined. The DK4 β-lactamase was confirmed to contain 2 mol of zinc per mol of enzyme protein. The apoenzyme that lacked the two zincs was structurally unstable, and the activities of only 30% of the apoenzyme molecules could be restored by the addition of 1 mM zinc sulfate. The substitution of five conserved histidines (His28, His86, His88, His149, His210) and a cysteine (Cys168) for an alanine indicated that His86, His88, and His149 served as ligands to one of the zincs and that Cys168 played a role as a ligand to the second zinc. Both zinc molecules contribute to the enzymatic process. Mutant enzymes that lack only one of these retained some activity. Additionally, a conserved aspartic acid at position 90 was replaced by asparagine. This mutant enzyme showed an approximately 1,000 times lower kcat value for cephalothin than that of the wild-type enzyme but retained the two zincs even after dialysis against zinc-free buffer. The observed effect of pH on the activity suggested that Asp90 functions as a general base in the enzymatic process.
PMCID: PMC90062  PMID: 10952572

Results 1-4 (4)