Search tips
Search criteria

Results 1-16 (16)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Increased Platelet Reactivity Is Associated with Circulating Platelet-Monocyte Complexes and Macrophages in Human Atherosclerotic Plaques 
PLoS ONE  2014;9(8):e105019.
Platelet reactivity, platelet binding to monocytes and monocyte infiltration play a detrimental role in atherosclerotic plaque progression. We investigated whether platelet reactivity was associated with levels of circulating platelet-monocyte complexes (PMCs) and macrophages in human atherosclerotic carotid plaques.
Platelet reactivity was determined by measuring platelet P-selectin expression after platelet stimulation with increasing concentrations of adenosine diphosphate (ADP), in two independent cohorts: the Circulating Cells cohort (n = 244) and the Athero-Express cohort (n = 91). Levels of PMCs were assessed by flow cytometry in blood samples of patients who were scheduled for percutaneous coronary intervention (Circulating Cells cohort). Monocyte infiltration was semi-quantitatively determined by histological examination of atherosclerotic carotid plaques collected during carotid endarterectomy (Athero-Express cohort).
We found increased platelet reactivity in patients with high PMCs as compared to patients with low PMCs (median (interquartile range): 4153 (1585–11267) area under the curve (AUC) vs. 9633 (3580–21565) AUC, P<0.001). Also, we observed increased platelet reactivity in patients with high macrophage levels in atherosclerotic plaques as compared to patients with low macrophage levels in atherosclerotic plaques (mean±SD; 8969±3485 AUC vs. 7020±3442 AUC, P = 0.02). All associations remained significant after adjustment for age, sex and use of drugs against platelet activation.
Platelet reactivity towards ADP is associated with levels of PMCs and macrophages in human atherosclerotic carotid plaques.
PMCID: PMC4133361  PMID: 25122139
2.  The CD200-CD200 Receptor Inhibitory Axis Controls Arteriogenesis and Local T Lymphocyte Influx 
PLoS ONE  2014;9(6):e98820.
The role of the CD200 ligand-CD200 receptor (CD200-CD200R) inhibitory axis is highly important in controlling myeloid cell function. Since the activation of myeloid cells is crucial in arteriogenesis, we hypothesized that disruption of the CD200-CD200R axis promotes arteriogenesis in a murine hindlimb ischemia model. Female Cd200−/− and wildtype (C57Bl/6J) mice underwent unilateral femoral artery ligation. Perfusion recovery was monitored over 7 days using Laser-Doppler analysis and was increased in Cd200−/− mice at day 3 and 7 after femoral artery ligation, compared to wildtype. Histology was performed on hindlimb muscles at baseline, day 3 and 7 to assess vessel geometry and number and inflammatory cell influx. Vessel geometry in non-ischemic muscles was larger, and vessel numbers in ischemic muscles were increased in Cd200−/− mice compared to wildtype. Furthermore, T lymphocyte influx was increased in Cd200−/− compared to wildtype. CD200R agonist treatment was performed in male C57Bl/6J mice to validate the role of the CD200-CD200R axis in arteriogenesis. CD200R agonist treatment after unilateral femoral artery ligation resulted in a significant decrease in vessel geometry, perfusion recovery and T lymphocyte influx at day 7 compared to isotype treatment. In this study, we show a causal role for the CD200-CD200R inhibitory axis in arteriogenesis in a murine hindlimb ischemia model. Lack of CD200R signaling is accompanied by increased T lymphocyte recruitment to the collateral vasculature and results in enlargement of preexisting collateral arteries.
PMCID: PMC4045841  PMID: 24897500
3.  Myocardial Infarction and Functional Outcome Assessment in Pigs 
Introduction of newly discovered cardiovascular therapeutics into first-in-man trials depends on a strictly regulated ethical and legal roadmap. One important prerequisite is a good understanding of all safety and efficacy aspects obtained in a large animal model that validly reflect the human scenario of myocardial infarction (MI). Pigs are widely used in this regard since their cardiac size, hemodynamics, and coronary anatomy are close to that of humans. Here, we present an effective protocol for using the porcine MI model using a closed-chest coronary balloon occlusion of the left anterior descending artery (LAD), followed by reperfusion. This approach is based on 90 min of myocardial ischemia, inducing large left ventricle infarction of the anterior, septal and inferoseptal walls. Furthermore, we present protocols for various measures of outcome that provide a wide range of information on the heart, such as cardiac systolic and diastolic function, hemodynamics, coronary flow velocity, microvascular resistance, and infarct size. This protocol can be easily tailored to meet study specific requirements for the validation of novel cardioregenerative biologics at different stages (i.e. directly after the acute ischemic insult, in the subacute setting or even in the chronic MI once scar formation has been completed). This model therefore provides a useful translational tool to study MI, subsequent adverse remodeling, and the potential of novel cardioregenerative agents.
PMCID: PMC4179618  PMID: 24796715
Medicine; Issue 86; myocardial infarction (MI); AMI; large animal model; pig; translational medicine; ischemic heart disease
4.  Admittance‐based pressure–volume loops versus gold standard cardiac magnetic resonance imaging in a porcine model of myocardial infarction 
Physiological Reports  2014;2(4):e00287.
A novel admittance‐based pressure–volume system (AS) has recently been developed and introduced. Thus far, the new technique has been validated predominantly in small animals. In large animals it has only been compared to three‐dimensional echocardiography (3DE) where the AS showed to overestimate left ventricular (LV) volumes. To fully determine the accuracy of this device, we compared the AS with gold standard cardiac magnetic resonance imaging (CMRI) in a porcine model of chronic myocardial infarction (MI). Fourteen pigs were subjected to 90 min closed chest balloon occlusion of the left anterior descending artery. After 8 weeks of follow up, pigs were consecutively subjected to LV volume measurements by the AS, CMRI, and 3DE under general anesthesia. The AS overestimated end diastolic volume (EDV; +20.9 ± 30.6 mL, P = 0.024) and end systolic volume (ESV; +17.7 ± 29.4 mL, P = 0.042) but not ejection fraction (EF; +2.46 ± 6.16%, P = NS) compared to CMRI. Good correlations of EDV (R = 0.626, P = 0.017) and EF (R = 0.704, P = 0.005) between the AS and CMRI were observed. EF measured by the AS and 3DE also correlated significantly (R = 0.624, P = 0.030). After subjection of pigs to MI, the AS very moderately overestimates LV volumes and shows accurate measurements for EF compared to CMRI. This makes the AS a useful tool to determine cardiac function and dynamic changes in large animal models of cardiac disease.
Is the novel admittance‐based pressure–volume loop system reliable for the assessment of left ventricular volumes compared to gold standard cardiac magnetic resonance imaging in a porcine model of myocardial infarction? In the postinfarction remodeled heart, admittance‐based pressure–volume loop measurements accurately measure ejection fraction and very moderately overestimate end diastolic and end systolic volumes compared to gold standard cardiac magnetic resonance imaging, making it a very useful technique for cardiac function assessment in experimental studies.
PMCID: PMC4001878  PMID: 24771693
Admittance; myocardial infarction; PV loops
5.  The Multifaceted Functions of CXCL10 in Cardiovascular Disease 
BioMed Research International  2014;2014:893106.
C-X-C motif ligand 10 (CXCL10), or interferon-inducible protein-10, is a small chemokine belonging to the CXC chemokine family. Its members are responsible for leukocyte trafficking and act on tissue cells, like endothelial and vascular smooth muscle cells. CXCL10 is secreted by leukocytes and tissue cells and functions as a chemoattractant, mainly for lymphocytes. After binding to its receptor CXCR3, CXCL10 evokes a range of inflammatory responses: key features in cardiovascular disease (CVD). The role of CXCL10 in CVD has been extensively described, for example for atherosclerosis, aneurysm formation, and myocardial infarction. However, there seems to be a discrepancy between experimental and clinical settings. This discrepancy occurs from differences in biological actions between species (e.g. mice and human), which is dependent on CXCL10 signaling via different CXCR3 isoforms or CXCR3-independent signaling. This makes translation from experimental to clinical settings challenging. Furthermore, the overall consensus on the actions of CXCL10 in specific CVD models is not yet reached. The purpose of this review is to describe the functions of CXCL10 in different CVDs in both experimental and clinical settings and to highlight and discuss the possible discrepancies and translational difficulties. Furthermore, CXCL10 as a possible biomarker in CVD will be discussed.
PMCID: PMC4017714  PMID: 24868552
6.  Circulating Immunoglobulins Are Not Associated with Intraplaque Mast Cell Number and Other Vulnerable Plaque Characteristics in Patients with Carotid Artery Stenosis 
PLoS ONE  2014;9(2):e88984.
Recently, we have shown that intraplaque mast cell numbers are associated with atherosclerotic plaque vulnerability and with future cardiovascular events, which renders inhibition of mast cell activation of interest for future therapeutic interventions. However, the endogenous triggers that activate mast cells during the progression and destabilization of atherosclerotic lesions remain unidentified. Mast cells can be activated by immunoglobulins and in the present study, we aimed to establish whether specific immunoglobulins in plasma of patients scheduled for carotid endarterectomy were related to (activated) intraplaque mast cell numbers and plasma tryptase levels. In addition, the levels were related to other vulnerable plaque characteristics and baseline clinical data.
Methods and Results
OxLDL-IgG, total IgG and total IgE levels were measured in 135 patients who underwent carotid endarterectomy. No associations were observed between the tested plasma immunoglobulin levels and total mast cell numbers in atherosclerotic plaques. Furthermore, no associations were found between IgG levels and the following plaque characteristics: lipid core size, degree of calcification, number of macrophages or smooth muscle cells, amount of collagen and number of microvessels. Interestingly, statin use was negatively associated with plasma IgE and oxLDL-IgG levels.
In patients suffering from carotid artery disease, total IgE, total IgG and oxLDL-IgG levels do not associate with plaque mast cell numbers or other vulnerable plaque histopathological characteristics. This study thus does not provide evidence that the immunoglobulins tested in our cohort play a role in intraplaque mast cell activation or grade of atherosclerosis.
PMCID: PMC3931690  PMID: 24586471
7.  Leukotriene B4 Levels in Human Atherosclerotic Plaques and Abdominal Aortic Aneurysms 
PLoS ONE  2014;9(1):e86522.
Leukotriene B4 (LTB4) has been associated with the initiation and progression of atherosclerosis and abdominal aortic aneurysm (AAA) formation. However, associations of LTB4 levels with tissue characteristics and adverse clinical outcome of advanced atherosclerosis and AAA are scarcely studied. We hypothesized that LTB4 levels are associated with a vulnerable plaque phenotype and adverse clinical outcome. Furthermore, that LTB4 levels are associated with inflammatory AAA and adverse clinical outcome.
Atherosclerotic plaques and AAA specimens were selected from two independent databases for LTB4 measurements. Plaques were isolated during carotid endarterectomy from asymptomatic (n = 58) or symptomatic (n = 317) patients, classified prior to surgery. LTB4 levels were measured without prior lipid extraction and levels were corrected for protein content. LTB4 levels were related to plaque phenotype, baseline patient characteristics and clinical outcome within three years following surgery. Seven non-diseased mammary artery specimens served as controls. AAA specimens were isolated during open repair, classified as elective (n = 189), symptomatic (n = 29) or ruptured (n = 23). LTB4 levels were measured similar to the plaque measurements and were related to tissue characteristics, baseline patient characteristics and clinical outcome. Twenty-six non-diseased aortic specimens served as controls.
LTB4 levels corrected for protein content were not significantly associated with histological characteristics specific for vulnerable plaques or inflammatory AAA as well as clinical presentation. Moreover, it could not predict secondary manifestations independently investigated in both databases. However, LTB4 levels were significantly lower in controls compared to plaque (p = 0.025) or AAA (p = 0.017).
LTB4 levels were not associated with a vulnerable plaque phenotype or inflammatory AAA or clinical presentation. This study does not provide supportive evidence for a role of LTB4 in atherosclerotic plaque destabilization or AAA expansion. However, these data should be interpreted with care, since LTB4 measurements were performed without prior lipid extractions.
PMCID: PMC3903534  PMID: 24475136
8.  FoxP1 Stimulates Angiogenesis by Repressing the Inhibitory Guidance Protein Semaphorin 5B in Endothelial Cells 
PLoS ONE  2013;8(9):e70873.
Forkhead box (Fox) transcription factors are important regulators of cardiovascular development and several Fox-proteins have recently been shown to modulate embryonic and post-natal angiogenesis. However, the role of the FoxP subfamily, which is highly expressed in cardiovascular tissue, has not been investigated so far. Here, we show that the transcription factor FoxP1 is the highest expressed FoxP-protein in endothelial cells and that it is upregulated at the site of neovascularization during hindlimb ischemia in mice. Silencing of FoxP1 results in a strong inhibition of proliferation, tube formation and migration of cultured endothelial cells. Accordingly, knockdown of FoxP1 in zebrafish was followed by a disruption of intersomitic vascular formation. Using gene expression profiling, we show that FoxP1 induces a specific change of the endothelial transcriptome and functions as a suppressor of semaphorin 5B, which has previously been described as a neuronal inhibitory factor. Our findings now demonstrate that semaphorin 5B also acts as a FoxP1- dependent suppressor of endothelial cell proliferation, migration and sprouting, mediating the effects of FoxP1. In summary, our data indicate that the transcription factor FoxP1 is essential for the angiogenic function of endothelial cells and functions as a suppressor of the inhibitory guidance cue semaphorin 5B, suggesting an important function of FoxP1 in the regulation of neovascularization.
PMCID: PMC3759435  PMID: 24023716
9.  Circulating Biomarkers for Predicting Cardiovascular Disease Risk; a Systematic Review and Comprehensive Overview of Meta-Analyses 
PLoS ONE  2013;8(4):e62080.
Cardiovascular disease is one of the major causes of death worldwide.
Assessing the risk for cardiovascular disease is an important aspect in clinical decision making and setting a therapeutic strategy, and the use of serological biomarkers may improve this. Despite an overwhelming number of studies and meta-analyses on biomarkers and cardiovascular disease, there are no comprehensive studies comparing the relevance of each biomarker. We performed a systematic review of meta-analyses on levels of serological biomarkers for atherothrombosis to compare the relevance of the most commonly studied biomarkers.
Methods and Findings
Medline and Embase were screened on search terms that were related to “arterial ischemic events” and “meta-analyses”. The meta-analyses were sorted by patient groups without pre-existing cardiovascular disease, with cardiovascular disease and heterogeneous groups concerning general populations, groups with and without cardiovascular disease, or miscellaneous. These were subsequently sorted by end-point for cardiovascular disease or stroke and summarized in tables. We have identified 85 relevant full text articles, with 214 meta-analyses. Markers for primary cardiovascular events include, from high to low result: C-reactive protein, fibrinogen, cholesterol, apolipoprotein B, the apolipoprotein A/apolipoprotein B ratio, high density lipoprotein, and vitamin D. Markers for secondary cardiovascular events include, from high to low result: cardiac troponins I and T, C-reactive protein, serum creatinine, and cystatin C. For primary stroke, fibrinogen and serum uric acid are strong risk markers. Limitations reside in that there is no acknowledged search strategy for prognostic studies or meta-analyses.
For primary cardiovascular events, markers with strong predictive potential are mainly associated with lipids. For secondary cardiovascular events, markers are more associated with ischemia. Fibrinogen is a strong predictor for primary stroke.
PMCID: PMC3632595  PMID: 23630624
10.  Toll-Like Receptor Induced CD11b and L-Selectin Response in Patients with Coronary Artery Disease 
PLoS ONE  2013;8(4):e60467.
Toll-Like Receptor (TLR) -2 and -4 expression and TLR-induced cytokine response of inflammatory cells are related to atherogenesis and atherosclerotic plaque progression. We examined whether immediate TLR induced changes in CD11b and L-selectin (CD62L) expression are able to discriminate the presence and severity of atherosclerotic disease by exploring single dose whole blood TLR stimulation and detailed dose-response curves. Blood samples were obtained from 125 coronary artery disease (CAD) patients and 28 controls. CD11b and L-selectin expression on CD14+ monocytes was measured after whole blood stimulation with multiple concentrations of the TLR4 ligand LPS (0.01–10 ng/ml) and the TLR2 ligand P3C (0.5–500 ng/ml). Subsequently, dose-response curves were created and the following parameters were calculated: hillslope, EC50, area under the curve (AUC) and delta. These parameters provide information about the maximum response following activation, as well as the minimum trigger required to induce activation and the intensity of the response. CAD patients showed a significantly higher L-selectin, but not CD11b response to TLR ligation than controls after single dose stimulations as well as significant differences in the hillslope and EC50 of the dose-response curves. Within the CAD patient group, dose-response curves of L-selectin showed significant differences in the presence of hypertension, dyslipidemia, coronary occlusion and degree of stenosis, whereas CD11b expression had the strongest discriminating power after single dose stimulation. In conclusion, single dose stimulations and dose-response curves of CD11b and L-selectin expression after TLR stimulation provide diverse but limited information about atherosclerotic disease severity in stable angina patients. However, both single dose stimulation and dose-response curves of LPS-induced L-selectin expression can discriminate between controls and CAD patients.
PMCID: PMC3616095  PMID: 23573259
11.  Fractional Flow Reserve Is Not Associated with Inflammatory Markers in Patients with Stable Coronary Artery Disease 
PLoS ONE  2012;7(10):e46356.
Atherosclerosis is an inflammatory condition and increased blood levels of inflammatory biomarkers have been observed in acute coronary syndromes. In addition, high expression of inflammatory markers is associated with worse prognosis of coronary artery disease. The presence and extent of inducible ischemia in patients with stable angina has previously been shown to have strong prognostic value. We hypothesized that evidence of inducible myocardial ischemia by local lesions, as measured by fractional flow reserve (FFR), is associated with increased levels of blood based inflammatory biomarkers.
Whole blood samples of 89 patients with stable angina pectoris and 16 healthy controls were analyzed. The patients with stable angina pectoris underwent coronary angiography and FFR of all coronary lesions.
We analyzed plasma levels of cytokines IL-6, IL-8 and TNF-α and membrane expression of Toll-like receptor 2 and 4, CD11b, CD62L and CD14 on monocytes and granulocytes as markers of inflammation.
Furthermore, we quantified the severity of hemodynamically significant coronary artery disease by calculating Functional Syntax Score (FSS), an extension of the Syntax Score.
For the majority of biomarkers, we observed lower levels in the healthy control group compared with patients with stable angina who underwent coronary catheterization.
We found no difference for any of the selected biomarkers between patients with a positive FFR (≤0.75) and negative FFR (>0.80). We observed no relationship between the investigated biomarkers and FSS.
The presence of local atherosclerotic lesions that result in inducible myocardial ischemia as measured by FFR in patients with stable coronary artery disease is not associated with increased plasma levels of IL-6, IL-8 and TNF-α or increased expression of TLR2 and TLR4, CD11b, CD62L and CD14 on circulating leukocytes.
PMCID: PMC3473026  PMID: 23091596
12.  In-vivo validation of a new non-invasive continuous ventricular stroke volume monitoring system in an animal model 
Critical Care  2011;15(4):R165.
Recently, a non-invasive, continuous ventricular stroke volume monitoring system using skin electrodes has been developed. In contrast to impedance-based methods, the new technique (ventricular field recognition) enables measurement of changes in ventricular volume. A prototype using this new method was built (the hemologic cardiac profiler, HCP) and validated against a reference method in a pig model during variations in cardiac output.
In six Dalland pigs, cardiac output was simultaneously measured with the HCP (CO-HCP), and an invasive ultrasonic flow-probe around the ascending aorta (CO-FP). Variations in CO were achieved by change in ventricular loading conditions, cardiac pacing, and dobutamine administration. Data were analysed according to Bland-Altman analysis and Pearson's correlation.
Pearson's correlation between the CO-HCP and the CO-FP was r = 0.978. Bland-Altman analysis showed a bias of - 0.114 L/minute, and a variability of the bias (2 standard deviations, 2SD) of 0.55 L/minute.
The results of the present study demonstrate that CO-HCP is comparable to CO-FP in an animal model of cardiac output measurements during a wide variation of CO. Therefore, the HCP has the potential to become a clinical applicable cardiac output monitor.
PMCID: PMC3387602  PMID: 21745380
13.  An animal paired crossover ePTFE arteriovenous graft model 
Previously, we developed a porcine model for Arterio Venous Graft (AVG) failure to allow assessment of new access strategies. This model was limited concerning graft length. In the present technical report, we describe a modification of our model allowing the assessment of long AVGs.
In 4 pigs, AVGs of 15 cm length were created bilaterally in a cross-over fashion between the carotid artery and the contralateral jugular vein. Two days (2 pigs) and two weeks (2 pigs) after AV shunting, graft patency was evaluated by angiography, showing all four grafts to be patent, with no sign of angiographic or macroscopic narrowing at the anastomoses sites.
In this modified pig AVG failure model, implantation of a bilateral cross-over long AVG is a feasible approach. The present model offers a suitable tool to study local interventions or compare various long graft designs aimed at improvement of AVG patency.
PMCID: PMC3006397  PMID: 21110903
14.  Haematopoietic and endothelial progenitor cells are deficient in quiescent systemic lupus erythematosus 
Annals of the Rheumatic Diseases  2007;66(7):865-870.
Systemic lupus erythematosus (SLE) is associated with a high prevalence of cardiovascular disease. Circulating endothelial progenitor cells (EPCs) contribute to vascular regeneration and repair, thereby protecting against atherosclerotic disease. EPCs are derived from CD34+ haematopoietic stem cells (HSCs), which have an increased propensity for apoptosis in the bone marrow of patients with SLE.
To determine whether circulating HSCs and EPCs are reduced in SLE, contributing to an increased cardiovascular risk.
Progenitor cells were sampled from 15 female patients with SLE in prolonged clinical remission from their disease and 15 matched healthy controls. HSC and CD34+KDR+ EPCs were quantified by flow cytometry. Annexin V staining was used to identify apoptotic cells.
Patients with SLE had reduced levels of circulating CD34+ HSCs and CD34+KDR+ EPCs, associated with increased HSC apoptosis. Compared with controls, the fraction of HSCs that could be identified as EPCs was higher in patients with SLE, consistent with a primary defect of HSCs. EPC outgrowth from mononuclear cells, which depends mainly on CD34− cells, was unaffected.
Patients with SLE have lower levels of circulating HSCs and EPCs, even during clinical remission. The data suggest that increased HSC apoptosis is the underlying cause for this depletion. These observations indicate that progenitor cell‐mediated endogenous vascular repair is impaired in SLE, which may contribute to the accelerated development of atherosclerosis.
PMCID: PMC1955125  PMID: 17329307
15.  Improved detection of fluorescently labeled microspheres and vessel architecture with an imaging cryomicrotome 
Due to spectral overlap, the number of fluorescent labels for imaging cryomicrotome detection was limited to 4. The aim of this study was to increase the separation of fluorescent labels. In the new imaging cryomicrotome, the sample is cut in slices of 40 μm. Six images are taken for each cutting plane. Correction for spectral overlap is based on linear combinations of fluorescent images. Locations of microspheres are determined by using the system point spread function. Five differently colored microspheres were injected in vivo distributed over two major coronaries, the left anterior descending and left circumflex artery. Under absence of collateral flow, microspheres outside of target perfusion territories were not found and the procedure did not generate false positive detection when spectral overlap was relevant. In silico-generated microspheres were used to test the effect of background image, transparency correction, and color separation. The percentage of microspheres undetected was 2.3 ± 0.8% in the presence and 1.5 ± 0.4% in the absence of background structures with a density of 900 microspheres per color per cm3. The image analysis method presented here, allows for an increased number of experimental conditions that can be investigated in studies of regional myocardial perfusion.
PMCID: PMC2903706  PMID: 20574721
Myocardial perfusion; Fluorescent microspheres; Microvascular structure; Cardiovascular imaging; Separation of fluorescent labels
16.  The proteoglycan osteoglycin/mimecan is correlated with arteriogenesis 
Molecular and Cellular Biochemistry  2008;322(1-2):15-23.
Arteriogenesis or collateral growth is able to compensate for the stenosis of major arteries. Using differential display RT-PCR on growing and quiescent collateral arteries in a rabbit femoral artery ligation model, we cloned the rabbit full-length cDNA of osteoglycin/mimecan. Osteoglycin was present in the adventitia of collateral arteries as a glycosylated protein without keratan sulfate side chains, mainly produced by smooth muscle cells (SMCs) and perivascular fibroblasts. Northern blot, Western blot, and immunohistochemistry confirmed a collateral artery-specific downregulation of osteoglycin from 6 h to 3 weeks after the onset of arteriogenesis. Treatment of primary SMCs with the arteriogenic protein fibroblast growth factor-2 (FGF-2) resulted in a similar reduction of osteoglycin expression as observed in vivo. Application of the FGF-2 inhibitor polyanethole sulfonic acid (PAS) blocked the downregulation of osteoglycin and interfered with arteriogenesis. From our study we conclude that downregulation of osteoglycin is a fundamental requirement for proper arteriogenesis.
PMCID: PMC2758385  PMID: 18979232
Gene expression; Smooth muscle cells; Collateral arteries; Fibroblast growth factor-2; Proteoglycans; Differential display

Results 1-16 (16)