Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Welding and Lung Cancer in a Pooled Analysis of Case-Control Studies 
American Journal of Epidemiology  2013;178(10):1513-1525.
Several epidemiologic studies have indicated an increased risk of lung cancer among welders. We used the SYNERGY project database to assess welding as a risk factor for developing lung cancer. The database includes data on 15,483 male lung cancer cases and 18,388 male controls from 16 studies in Europe, Canada, China, and New Zealand conducted between 1985 and 2010. Odds ratios and 95% confidence intervals between regular or occasional welding and lung cancer were estimated, with adjustment for smoking, age, study center, and employment in other occupations associated with lung cancer risk. Overall, 568 cases and 427 controls had ever worked as welders and had an odds ratio of developing lung cancer of 1.44 (95% confidence interval: 1.25, 1.67) with the odds ratio increasing for longer duration of welding. In never and light smokers, the odds ratio was 1.96 (95% confidence interval: 1.37, 2.79). The odds ratios were somewhat higher for squamous and small cell lung cancers than for adenocarcinoma. Another 1,994 cases and 1,930 controls had ever worked in occupations with occasional welding. Work in any of these occupations was associated with some elevation of risk, though not as much as observed in regular welders. Our findings lend further support to the hypothesis that welding is associated with an increased risk of lung cancer.
PMCID: PMC3888276  PMID: 24052544
case-control studies; lung cancer; occupational exposure; welding
2.  Oxidatively damaged guanosine in white blood cells and in urine of welders: associations with exposure to welding fumes and body iron stores 
Archives of Toxicology  2014;89(8):1257-1269.
The International Agency for Research on Cancer considers the carcinogenicity of welding fume of priority for re-evaluation. Genotoxic effects in experimental animals are still inconclusive. Here, we investigated the association of personal exposure to metals in respirable welding fumes during a working shift with oxidatively damaged guanosine in DNA of white blood cells (WBC) and in postshift urine samples from 238 welders. Medians of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) were 2.35/106 dGuo in DNA of WBC and 4.33 µg/g creatinine in urine. The median of 8-oxo-7,8-dihydroguanosine (8-oxoGuo) was 7.03 µg/g creatinine in urine. The extent of both urinary parameters was higher in welders applying techniques with high particle emission rates to stainless steel than in tungsten inert gas welders (8-oxodGuo: 9.96 vs. 4.49 µg/L, 8-oxoGuo: 15.7 vs. 7.7 µg/L), but this apparent difference diminished after creatinine adjustment. We applied random intercept models to estimate the influence of airborne and systemic exposure to metals on oxidatively damaged guanosine in WBC and urine together with covariates. We observed a highly significant nonlinear association of urinary 8-oxoGuo with serum ferritin (P < 0.0001) and higher 8-oxoGuo concentrations for respirable iron >1,000 µg/m3 compared to ≤57 µg/m3. Similar effects were found for manganese. Airborne chromium but not nickel was associated with all oxidatively modified guanosine measures, whereas urinary chromium as well as nickel showed associations with urinary modified guanosines. In summary, oxidatively damaged urinary guanosine was associated with airborne and systemic exposure to metals in welders and showed a strong relation to body iron stores.
Electronic supplementary material
The online version of this article (doi:10.1007/s00204-014-1319-2) contains supplementary material, which is available to authorized users.
PMCID: PMC4508371  PMID: 25107450
Adducts; Chromium; Iron; Ferritin; Oxidative damage; Welders
3.  Exposure to Inhalable, Respirable, and Ultrafine Particles in Welding Fume 
Annals of Occupational Hygiene  2012;56(5):557-567.
This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m−3 for inhalable and 1.29 mg m−3 for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m−3). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements
PMCID: PMC3387834  PMID: 22539559
exposure; inhalable particles; manganese; respirable particles; UFP; welding fume

Results 1-3 (3)