PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Evaluation of the Effect of Four Fibers on Laxation, Gastrointestinal Tolerance and Serum Markers in Healthy Humans 
Background
Average dietary fiber intake in the United States is roughly half of the recommended amount. As new dietary fiber products are introduced to increase fiber intake, it is critical to evaluate the physiological effects of such fibers. Aims: This study examined the effect of 4 fibers derived from maize or tapioca on fecal chemistry, gastrointestinal (GI) symptoms and serum markers of chronic disease.
Methods
Twenty healthy subjects completed the single-blind crossover study in which 12 g/day of fiber (pullulan, Promitor™ Resistant Starch, soluble fiber dextrin or Promitor Soluble Corn Fiber) or placebo (maltodextrin) were consumed for 14 days followed by a 21-day washout. GI symptom surveys were completed (days 3 and 14), stools were collected (days 11–14), diet was recorded (days 12–14) and fasting blood samples were obtained (day 15).
Results
The 4 test fibers were well tolerated, with mild to moderate GI symptoms. Total short-chain fatty acid (SCFA) concentrations did not differ among the treatments. Fecal pH and individual SCFAs were affected by some treatments. Stool weight and serum markers of chronic disease did not change with these treatments.
Conclusion
Increasing fiber intake by 12 g/day was well tolerated and may have a positive impact on colon health due to fermentation.
doi:10.1159/000275962
PMCID: PMC2853587  PMID: 20090313
Pullulan; Resistant starch; Short-chain fatty acids; Gas production; Cholesterol; Ghrelin
2.  Concentrated oat β-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trial 
Nutrition Journal  2007;6:6.
Background
Soluble fibers lower serum lipids, but are difficult to incorporate into products acceptable to consumers. We investigated the physiological effects of a concentrated oat β-glucan on cardiovascular disease (CVD) endpoints in human subjects. We also compared the fermentability of concentrated oat β-glucan with inulin and guar gum in a model intestinal fermentation system.
Methods
Seventy-five hypercholesterolemic men and women were randomly assigned to one of two treatments: 6 grams/day concentrated oat β-glucan or 6 grams/day dextrose (control). Fasting blood samples were collected at baseline, week 3, and week 6 and analyzed for total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, glucose, insulin, homocysteine and C-reactive protein (CRP). To estimate colonic fermentability, 0.5 g concentrated oat β-glucan was incubated in a batch model intestinal fermentation system, using human fecal inoculum to provide representative microflora. Fecal donors were not involved with the β-glucan feeding trial. Inulin and guar gum were also incubated in separate serum bottles for comparison.
Results
Oat β-glucan produced significant reduction from baseline in total cholesterol (-0.3 ± 0.1 mmol/L) and LDL cholesterol (-0.3 ± 0.1 mmol/L), and the reduction in LDL cholesterol were significantly greater than in the control group (p = 0.03). Concentrated oat β-glucan was a fermentable fiber and produced total SCFA and acetate concentrations similar to inulin and guar gum. Concentrated oat β-glucan produced the highest concentrations of butyrate at 4, 8, and 12 hours.
Conclusion
Six grams concentrated oat β-glucan per day for six weeks significantly reduced total and LDL cholesterol in subjects with elevated cholesterol, and the LDL cholesterol reduction was greater than the change in the control group. Based on a model intestinal fermentation, this oat β-glucan was fermentable, producing higher amounts of butyrate than other fibers. Thus, a practical dose of β-glucan can significantly lower serum lipids in a high-risk population and may improve colon health.
doi:10.1186/1475-2891-6-6
PMCID: PMC1847683  PMID: 17386092

Results 1-2 (2)