Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Differential Effects of Low-Phenylalanine Protein Sources on Brain Neurotransmitters and Behavior in C57Bl/6-Pahenu2 Mice 
Molecular genetics and metabolism  2014;111(4):452-461.
Phenylketonuria (PKU) is an inborn error of metabolism caused by a deficiency of the enzyme phenylalanine hydroxylase, which metabolizes phenylalanine (phe) to tyrosine. A low-phe diet plus amino acid (AA) formula is necessary to prevent cognitive impairment; glycomacropeptide (GMP) contains minimal phe and provides a palatable alternative to the AA formula. Our objective was to assess neurotransmitter concentrations in brain and the behavioral phenotype of PKU mice (Pahenu2 on the C57Bl/6 background) and how this is affected by low-phe protein sources. Wild type (WT) and PKU mice, both male and female, were fed high-phe casein, low-phe AA, or low-phe GMP diets between 3–18 weeks of age. Behavioral phenotype was assessed using the open field and marble burying tests, and brain neurotransmitter concentration measured using HPLC with electrochemical detection system. Data were analyzed by 3-way ANOVA with genotype, sex, and diet as the main treatment effects. Brain mass and the concentrations of catecholamines and serotonin were reduced in PKU mice compared to WT mice; the low-phe AA and GMP diets improved these parameters in PKU mice. Relative brain mass was increased in female PKU mice fed the GMP diet compared to the AA diet. PKU mice exhibited hyperactivity and impaired vertical exploration compared to their WT littermates during the open field test. Regardless of genotype or diet, female mice demonstrated increased vertical activity time and increased total ambulatory and horizontal activity counts compared with male mice. PKU mice fed the high-phe casein diet buried significantly fewer marbles than WT control mice fed casein; this was normalized in PKU mice fed the low-phe AA and GMP diets. In summary, C57Bl/6-Pahenu2 mice showed an impaired behavioral phenotype and reduced brain neurotransmitter concentrations that were improved by the low-phe AA or GMP diets. These data support lifelong adherence to a low-phe diet for PKU.
PMCID: PMC3995025  PMID: 24560888
Phenylketonuria; glycomacropeptide; marble burying; open field; catecholamines; serotonin
2.  Advances in the nutritional and pharmacological management of phenylketonuria 
Structural Abstract
Purpose of review
The purpose is to discuss advances in the nutritional and pharmacological management of phenylketonuria (PKU).
Recent findings
Glycomacropeptide (GMP), a whey protein produced during cheese production, is a low-phe intact protein that represents a new dietary alternative to synthetic amino acids (AAs) for people with PKU. Skeletal fragility is a long-term complication of PKU that based on murine research, appears to result from both genetic and nutritional factors. Skeletal fragility in murine PKU is attenuated with the GMP diet, compared with an AA diet, allowing greater radial bone growth. Pharmacologic therapy with tetrahydrobiopterin (BH4), acting as a molecular chaperone for phenylalanine hydroxylase, increases tolerance to dietary phe in some individuals. Large neutral AAs (LNAA) inhibit phe transport across the intestinal mucosa and blood brain barrier; LNAA are most effective for individuals unable to comply with the low-phe diet.
Although a low-phe synthetic AA diet remains the mainstay of PKU management, new nutritional and pharmacological treatment options offer alternative approaches to maintain lifelong low phe concentrations. GMP medical foods provide an alternative to AA formula that may improve bone health, and BH4 permits some individuals with PKU to increase tolerance to dietary phe. Further research is needed to characterize the long-term efficacy of these new approaches for PKU management.
PMCID: PMC4004170  PMID: 24136088
phenylketonuria; glycomacropeptide; tetrahydrobiopterin; large neutral amino acids; bone biomechanical performance
3.  Food Products Made With Glycomacropeptide, a Low Phenylalanine Whey Protein, Provide a New Alternative to Amino Acid-Based Medical Foods for Nutrition Management of Phenylketonuria 
Phenylketonuria (PKU), an inborn error in phenylalanine (phe) metabolism, requires lifelong nutrition management with a low-phe diet, which includes a phe-free amino acid-based medical formula to provide the majority of an individual’s protein needs. Compliance with this diet is often difficult for older children, adolescents and adults with PKU. The whey protein glycomacropeptide (GMP) is ideally suited for the PKU diet since it is naturally low in phe. Nutritionally complete, acceptable medical foods and beverages can be made with GMP to increase the variety of protein sources for the PKU diet. As an intact protein, GMP improves protein utilization and increases satiety compared with amino acids. Thus, GMP provides a new, more physiologic source of low-phe dietary protein for those with PKU.
PMCID: PMC3402906  PMID: 22818728
Inborn Errors of Metabolism; Whey Proteins; Phenylalanine Metabolism; Glycomacropeptide
4.  Colonic GLP-2 is not Sufficient to Promote Jejunal Adaptation in a PN-Dependent Rat Model of Human Short Bowel Syndrome 
Bowel resection may lead to short bowel syndrome (SBS), which often requires parenteral nutrition (PN) due to inadequate intestinal adaptation. The objective of this study was to determine the time course of adaptation and proglucagon system responses after bowel resection in a PN-dependent rat model of SBS.
Rats underwent jugular catheter placement and a 60% jejunoileal resection + cecectomy with jejunoileal anastomosis or transection control surgery. Rats were maintained exclusively with PN and killed at 4 hours to 12 days. A nonsurgical group served as baseline. Bowel growth and digestive capacity were assessed by mucosal mass, protein, DNA, histology, and sucrase activity. Plasma insulin-like growth factor I (IGF-I) and bioactive glucagon-like peptide 2 (GLP-2) were measured by radioimmunoassay.
Jejunum cellularity changed significantly over time with resection but not transection, peaking at days 3–4 and declining by day 12. Jejunum sucrase-specific activity decreased significantly with time after resection and transection. Colon crypt depth increased over time with resection but not transection, peaking at days 7–12. Plasma bioactive GLP-2 and colon proglucagon levels peaked from days 4–7 after resection and then approached baseline. Plasma IGF-I increased with resection through day 12. Jejunum and colon GLP-2 receptor RNAs peaked by day 1 and then declined below baseline.
After bowel resection resulting in SBS in the rat, peak proglucagon, plasma GLP-2, and GLP-2 receptor levels are insufficient to promote jejunal adaptation. The colon adapts with resection, expresses proglucagon, and should be preserved when possible in massive intestinal resection.
PMCID: PMC3631543  PMID: 19644131
intestinal failure; intestinal adaptation; GI hormones; short bowel syndrome; bowel resection
5.  Exogenous Glucagon-Like Peptide-2 (GLP-2) Augments GLP-2 Receptor mRNA and Maintains Proglucagon mRNA Levels in Resected Rats 
Glucagon-like peptide-2 (GLP-2) is a nutrient-dependent proglucagon-derived hormone that stimulates intestinal adaptive growth. Our aim was to determine whether exogenous GLP-2 increases resection-induced adaptation without diminishing endogenous proglucagon and GLP-2 receptor expression.
Rats underwent transection or 70% jejunoileal resection ± GLP-2 infusion (100 μg/kg body weight/d) and were fed a semipurified diet with continuous infusion of GLP-2 or saline by means of jugular catheter. After 7 days, body weight, mucosal cellularity (dry mass, protein and DNA), crypt–villus height, and crypt cell proliferation (by bromodeoxyuridine staining) were determined. Plasma bioactive GLP-2 (by radioimmunoassay), proglucagon and GLP-2 receptor mRNA expression (by Northern blot and real-time reverse transcriptase quantitative polymerase chain reaction) were measured. GLP-2 receptor was colocalized to neuroendocrine markers by immunohistochemistry.
Low-dose exogenous GLP-2 increased mucosal cellularity and crypt–villus height in the duodenum, jejunum, and ileum; enterocyte proliferation in the jejunal crypt; and duodenal and jejunal sucrase segmental activity. Plasma bioactive GLP-2 concentration increased 70% upon resection, with an additional 54% increase upon GLP-2 infusion in resected rats (P < .05). Ileal proglucagon mRNA expression increased with resection, and exogenous ileum GLP-2 failed to blunt this response. Exogenous GLP-2 increased ileum GLP-2 receptor expression 3-fold in resected animals and was colocalized to vasoactive intestinal peptide-positive and endothelial nitric oxide synthase-expressing enteric neurons and serotonin-containing enteroendocrine cells in the jejunum and ileum of resected rats.
Exogenous GLP-2 augments adaptive growth and digestive capacity of the residual small intestine in a rat model of mid–small bowel resection by increasing plasma GLP-2 concentrations and GLP-2 receptor expression without diminishing endogenous proglucagon expression.
PMCID: PMC3631545  PMID: 18443137
intestinal failure; intestinal adaptation; GI hormones; short bowel syndrome; bowel resection
6.  Breakfast with glycomacropeptide compared with amino acids suppresses plasma ghrelin levels in individuals with phenylketonuria 
Molecular genetics and metabolism  2010;100(4):303-308.
Phenylketonuria (PKU) requires a lifelong low-phenylalanine (phe) diet where protein needs are met by consumption of a phe-free amino acid (AA) formula; complaints of persistent hunger are common. Foods made with glycomacropeptide (GMP), an intact protein that contains minimal phe and may promote satiety, provide an alternative to AA formula. The objective was to assess the ability of a GMP breakfast to promote satiety and affect plasma concentrations of AAs, insulin, and the appetite stimulating hormone ghrelin in those with PKU, when compared to an AA-based breakfast. Eleven PKU subjects (8 adults and 3 boys ages 11–14) served as their own controls in an inpatient metabolic study with two 4-day treatments: an AA-based diet followed by a diet replacing all AA formula with GMP foods. Plasma concentrations of AAs, insulin and ghrelin were obtained before and/or 180 minutes after breakfast. Satiety was assessed using a visual analog scale before, immediately after and 180 minutes after breakfast. Postprandial ghrelin concentration was significantly lower (p=0.03) with GMP compared to an AA-based breakfast, with no difference in fasting ghrelin. Lower postprandial ghrelin concentrations were associated with greater feelings of fullness 180 minutes after breakfast suggesting greater satiety with GMP compared to AAs. Postprandial concentrations of insulin and total plasma AAs were higher after a GMP breakfast compared to an AA-based breakfast consistent with slower absorption of AAs from GMP. These results show sustained ghrelin suppression, and suggest greater satiety with ingestion of a meal containing GMP compared with AAs.
PMCID: PMC2906609  PMID: 20466571
satiety; hunger; insulin; PKU; GMP
7.  Nutritional Management of Phenylketonuria 
Annales Nestlé  2010;68(2):58-69.
Phenylketonuria (PKU) is caused by deficient activity of the enzyme phenylalanine hydroxylase, needed to convert the essential amino acid (AA) phenylalanine (phe) to tyrosine. In order to prevent neurological damage, lifelong adherence to a low-phe diet that is restricted in natural foods and requires ingestion of a phe-free AA formula to meet protein needs is required. The goal of nutritional management for those with PKU is to maintain plasma phe concentrations that support optimal growth, development, and mental functioning while providing a nutritionally complete diet. This paper reviews developing a lifelong dietary prescription for those with PKU, outcomes of nutritional management, compliance with the low-phe diet across the life cycle, and new options for nutritional management. An individualized dietary prescription is needed to meet nutrient requirements, and the adequacy of phe intake is monitored with assessment of blood phe levels. Elevated phe concentrations may occur due to illness, excessive or inadequate phe intake, or inadequate intake of AA formula. Although normal growth and development occurs with adherence to the low-phe diet, it is important to monitor vitamin, mineral and essential fatty acid status, especially in those who do not consume sufficient AA formula. Given the growing population of adults with PKU, further research is needed to understand the risks for developing osteoporosis and cardiovascular disease. There are promising new options to liberalize the diet and improve metabolic control such as tetrahydrobiopterin therapy or supplementation with large neutral AAs. Moreover, foods made with glycomacropeptide, an intact protein that contains minimal phe, improves the PKU diet by offering a palatable alternative to AA formula. In summary, continued efforts are needed to overcome the biggest challenge to living with PKU – lifelong adherence to the low-phe diet.
PMCID: PMC2901905  PMID: 22475869
Phenylketonuria; Phenylalanine; Phenylalanine hydroxylase; Long-chain polyunsaturated fatty acids; Tetrahydrobiopterin; Amino acid
8.  Reassessment of Phenylalanine Tolerance in Adults with Phenylketonuria is Needed as Body Mass Changes 
Molecular genetics and metabolism  2009;98(4):331-337.
Lifelong treatment of phenylketonuria (PKU) includes a phenylalanine (phe) restricted diet that provides sufficient phe for growth and maintenance plus phe-free amino acid formula to meet requirements for protein, energy and micronutrients. Phe tolerance (mg phe/kg body weight/day) is the amount of phe those with PKU can consume and maintain acceptable blood phe levels; it requires individual assessment because of varying phenylalanine hydroxylase activity. The objective was to reassess phe tolerance in 8 adults with PKU considering phe requirements, blood phe levels, genotype and phe tolerance at 5 years of age. Subjects had not received a personalized assessment of phe tolerance in several years, and 5 subjects were overweight, body mass index (BMI) 25–28. With the guidance of a metabolic dietitian, 7 subjects increased phe tolerance (by 15–173%) without significantly increasing blood phe concentration. Increased phe tolerance was associated with both improved dietary compliance and inadequate phe intake at the onset of the protocol compared with current requirements. Improved dietary compliance reflected increased consumption of protein equivalents from amino acid formula and increased frequency of formula intake, from 2.2 to 3 times per day. Predictors of higher final phe tolerance following reassessment included being male and having a lower BMI (R2=0.588). This suggests that the rising trend of overweight and obesity may affect assessment of phe tolerance in adults. Therefore, interaction with the metabolic dietitian to reassess phe tolerance in relation to body mass is essential throughout adulthood to insure adequate intake of phe to support protein synthesis and prevent catabolism.
PMCID: PMC2783926  PMID: 19747868
PKU; amino acid requirements; genotype-phenotype relationship; low-phenylalanine diet
9.  Acceptable low-phenylalanine foods and beverages can be made with glycomacropeptide from cheese whey for individuals with PKU 
Molecular genetics and metabolism  2007;92(1-2):176-178.
Glycomacropeptide (GMP) is a whey protein that contains no aromatic amino acids including phenylalanine (phe). The objective of this study was to make a variety of palatable, low-phe foods and beverages with GMP and to assess their acceptability by conducting consumer sensory studies in individuals with PKU. Results demonstrate acceptability of products made with GMP. GMP supplemented with limiting indispensable amino acids could provide an alternative protein source for individuals with PKU.
PMCID: PMC2032016  PMID: 17644019
10.  Purification and Use of Glycomacropeptide for Nutritional Management of Phenylketonuria 
Journal of food science  2009;74(4):E199-E206.
Individuals with phenylketonuria (PKU) cannot metabolize phenylalanine (Phe) and must adhere to a low-Phe diet in which most dietary protein is provided by a Phe-free amino acid formula. Glycomacropeptide (GMP) is the only naturally occurring protein that does not contain Phe, and is of interest as a source of protein for dietary management of PKU. However, commercially available GMP contains too much Phe from residual whey proteins and does not contain adequate levels of all the indispensable amino acids to provide a nutritionally complete protein. The aim of this study was to increase purity of GMP and develop a mass balance calculation for indispensable amino acid supplementation of GMP foods. Cation exchange chromatography, ultrafiltration/diafiltration, and lyophilization were used at the pilot plant scale to decrease Phe. Enough purified GMP (5 kg) was manufactured to provide 15 PKU subjects with a 4-d diet in which the majority of protein was from GMP foods. A mass balance was used to supplement GMP foods so that all indispensable amino acids met or exceeded the daily recommended intake. GMP foods were tested in a human clinical trial as a replacement for the traditional amino acid formula. Nutritionally complete GMP foods created with high purity GMP provide individuals with PKU with more options to manage PKU, which may lead to improved compliance and quality of life.
PMCID: PMC3632067  PMID: 19490325
foods; glycomacropeptide; phenylalanine; phenylketonuria; purification
11.  Low Bone Strength Is a Manifestation of Phenylketonuria in Mice and Is Attenuated by a Glycomacropeptide Diet 
PLoS ONE  2012;7(9):e45165.
Phenylketonuria (PKU), caused by phenylalanine (phe) hydroxylase loss of function mutations, requires a low-phe diet plus amino acid (AA) formula to prevent cognitive impairment. Glycomacropeptide (GMP), a low-phe whey protein, provides a palatable alternative to AA formula. Skeletal fragility is a poorly understood chronic complication of PKU. We sought to characterize the impact of the PKU genotype and dietary protein source on bone biomechanics.
Wild type (WT; Pah+/+) and PKU (Pahenu2/enu2) mice on a C57BL/6J background were fed high-phe casein, low-phe AA, and low-phe GMP diets between 3 to 23 weeks of age. Following euthanasia, femur biomechanics were assessed by 3-point bending and femoral diaphyseal structure was determined. Femoral ex vivo bone mineral density (BMD) was assessed by dual-enengy x-ray absorptiometry. Whole bone parameters were used in prinicipal component analysis. Data were analyzed by 3-way ANCOVA with genotype, sex, and diet as the main factors.
Regardless of diet and sex, PKU femora were more brittle, as manifested by lower post-yield displacement, weaker, as manifested by lower energy and yield and maximal loads, and showed reduced BMD compared with WT femora. Four principal components accounted for 87% of the variance and all differed significantly by genotype. Regardless of genotype and sex, the AA diet reduced femoral cross-sectional area and consequent maximal load compared with the GMP diet.
Skeletal fragility, as reflected in brittle and weak femora, is an inherent feature of PKU. This PKU bone phenotype is attenuated by a GMP diet compared with an AA diet.
PMCID: PMC3445501  PMID: 23028819
12.  Total Parenteral Nutrition Attenuates Cerulein-Induced Pancreatitis in Rats 
Pancreas  2010;39(3):377-384.
Our aim was to determine if total parenteral nutrition (TPN)–induced pancreatic atrophy and Hsp70 expression attenuates cerulein-induced pancreatitis in rats.
Rats were randomized to a 7-day course of saline infusion plus a semipurified diet or TPN, with or without an intravenous cerulein injection or vehicle on day 7, and killed 1 or 6 hours after the injection. Based on a pilot study, 1 hour was the primary time point. Pancreatic atrophy was determined by mass, protein, and DNA contents. Pancreatic heat shock protein 70 (Hsp70) expression was measured by Western analysis. Histological examination of the pancreas assessed for edema, inflammation, vacuolization, and apoptosis. Serum amylase activity was measured using the Phadebas assay. Pancreatic trypsinogen activation was measured using a fluorometric substrate assay.
The saline-infused rats fed orally gained significantly more weight than TPN rats. The TPN decreased the pancreatic mass and protein content and the protein-DNA ratio and increased the pancreatic DNA content compared with the saline. The TPN increased the pancreatic Hsp70 expression by 91% compared with the saline. The TPN reduced the cerulein-induced pancreatic histological edema, the vacuolization, and the inflammation compared with the saline. The increase in the serum amylase level after cerulein injection was significantly attenuated, and trypsinogen activation was reduced in TPN animals compared with the saline group.
Lack of luminal nutrients with a 7-day course of TPN provides moderate protection against cerulein-induced pancreatitis in rats.
PMCID: PMC3362194  PMID: 19904225
total parenteral nutrition; pancreatitis; heat shock protein 70; cerulean; rat; TPN

Results 1-12 (12)