Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Computational modeling to predict nitrogen balance during acute metabolic decompensation in patients with urea cycle disorders 
Nutritional management of acute metabolic decompensation in amino acid inborn errors of metabolism (AA IEM) aims to restore nitrogen balance. While nutritional recommendations have been published, they have never been rigorously evaluated. Furthermore, despite these recommendations, there is a wide variation in the nutritional strategies employed amongst providers, particularly regarding the inclusion of parenteral lipids for protein-free caloric support. Since randomized clinical trials during acute metabolic decompensation are difficult and potentially dangerous, mathematical modeling of metabolism can serve as a surrogate for the preclinical evaluation of nutritional interventions aimed at restoring nitrogen balance during acute decompensation in AA IEM. A validated computational model of human macronutrient metabolism was adapted to predict nitrogen balance in response to various nutritional interventions in a simulated patient with a urea cycle disorder (UCD) during acute metabolic decompensation due to dietary non-adherence or infection. The nutritional interventions were constructed from published recommendations as well as clinical anecdotes. Overall, dextrose alone (DEX) was predicted to be better at restoring nitrogen balance and limiting nitrogen excretion during dietary non-adherence and infection scenarios, suggesting that the published recommended nutritional strategy involving dextrose and parenteral lipids (ISO) may be suboptimal. The implications for patients with AA IEM are that the medical course during acute metabolic decompensation may be influenced by the choice of protein-free caloric support. These results are also applicable to intensive care patients undergoing catabolism (postoperative phase or sepsis), where parenteral nutritional support aimed at restoring nitrogen balance may be more tailored regarding metabolic fuel selection.
PMCID: PMC4713290  PMID: 26260782
2.  Purification and Use of Glycomacropeptide for Nutritional Management of Phenylketonuria 
Journal of food science  2009;74(4):E199-E206.
Individuals with phenylketonuria (PKU) cannot metabolize phenylalanine (Phe) and must adhere to a low-Phe diet in which most dietary protein is provided by a Phe-free amino acid formula. Glycomacropeptide (GMP) is the only naturally occurring protein that does not contain Phe, and is of interest as a source of protein for dietary management of PKU. However, commercially available GMP contains too much Phe from residual whey proteins and does not contain adequate levels of all the indispensable amino acids to provide a nutritionally complete protein. The aim of this study was to increase purity of GMP and develop a mass balance calculation for indispensable amino acid supplementation of GMP foods. Cation exchange chromatography, ultrafiltration/diafiltration, and lyophilization were used at the pilot plant scale to decrease Phe. Enough purified GMP (5 kg) was manufactured to provide 15 PKU subjects with a 4-d diet in which the majority of protein was from GMP foods. A mass balance was used to supplement GMP foods so that all indispensable amino acids met or exceeded the daily recommended intake. GMP foods were tested in a human clinical trial as a replacement for the traditional amino acid formula. Nutritionally complete GMP foods created with high purity GMP provide individuals with PKU with more options to manage PKU, which may lead to improved compliance and quality of life.
PMCID: PMC3632067  PMID: 19490325
foods; glycomacropeptide; phenylalanine; phenylketonuria; purification
3.  Breakfast with glycomacropeptide compared with amino acids suppresses plasma ghrelin levels in individuals with phenylketonuria 
Molecular genetics and metabolism  2010;100(4):303-308.
Phenylketonuria (PKU) requires a lifelong low-phenylalanine (phe) diet where protein needs are met by consumption of a phe-free amino acid (AA) formula; complaints of persistent hunger are common. Foods made with glycomacropeptide (GMP), an intact protein that contains minimal phe and may promote satiety, provide an alternative to AA formula. The objective was to assess the ability of a GMP breakfast to promote satiety and affect plasma concentrations of AAs, insulin, and the appetite stimulating hormone ghrelin in those with PKU, when compared to an AA-based breakfast. Eleven PKU subjects (8 adults and 3 boys ages 11–14) served as their own controls in an inpatient metabolic study with two 4-day treatments: an AA-based diet followed by a diet replacing all AA formula with GMP foods. Plasma concentrations of AAs, insulin and ghrelin were obtained before and/or 180 minutes after breakfast. Satiety was assessed using a visual analog scale before, immediately after and 180 minutes after breakfast. Postprandial ghrelin concentration was significantly lower (p=0.03) with GMP compared to an AA-based breakfast, with no difference in fasting ghrelin. Lower postprandial ghrelin concentrations were associated with greater feelings of fullness 180 minutes after breakfast suggesting greater satiety with GMP compared to AAs. Postprandial concentrations of insulin and total plasma AAs were higher after a GMP breakfast compared to an AA-based breakfast consistent with slower absorption of AAs from GMP. These results show sustained ghrelin suppression, and suggest greater satiety with ingestion of a meal containing GMP compared with AAs.
PMCID: PMC2906609  PMID: 20466571
satiety; hunger; insulin; PKU; GMP
4.  Nutritional Management of Phenylketonuria 
Annales Nestlé  2010;68(2):58-69.
Phenylketonuria (PKU) is caused by deficient activity of the enzyme phenylalanine hydroxylase, needed to convert the essential amino acid (AA) phenylalanine (phe) to tyrosine. In order to prevent neurological damage, lifelong adherence to a low-phe diet that is restricted in natural foods and requires ingestion of a phe-free AA formula to meet protein needs is required. The goal of nutritional management for those with PKU is to maintain plasma phe concentrations that support optimal growth, development, and mental functioning while providing a nutritionally complete diet. This paper reviews developing a lifelong dietary prescription for those with PKU, outcomes of nutritional management, compliance with the low-phe diet across the life cycle, and new options for nutritional management. An individualized dietary prescription is needed to meet nutrient requirements, and the adequacy of phe intake is monitored with assessment of blood phe levels. Elevated phe concentrations may occur due to illness, excessive or inadequate phe intake, or inadequate intake of AA formula. Although normal growth and development occurs with adherence to the low-phe diet, it is important to monitor vitamin, mineral and essential fatty acid status, especially in those who do not consume sufficient AA formula. Given the growing population of adults with PKU, further research is needed to understand the risks for developing osteoporosis and cardiovascular disease. There are promising new options to liberalize the diet and improve metabolic control such as tetrahydrobiopterin therapy or supplementation with large neutral AAs. Moreover, foods made with glycomacropeptide, an intact protein that contains minimal phe, improves the PKU diet by offering a palatable alternative to AA formula. In summary, continued efforts are needed to overcome the biggest challenge to living with PKU – lifelong adherence to the low-phe diet.
PMCID: PMC2901905  PMID: 22475869
Phenylketonuria; Phenylalanine; Phenylalanine hydroxylase; Long-chain polyunsaturated fatty acids; Tetrahydrobiopterin; Amino acid
5.  Reassessment of Phenylalanine Tolerance in Adults with Phenylketonuria is Needed as Body Mass Changes 
Molecular genetics and metabolism  2009;98(4):331-337.
Lifelong treatment of phenylketonuria (PKU) includes a phenylalanine (phe) restricted diet that provides sufficient phe for growth and maintenance plus phe-free amino acid formula to meet requirements for protein, energy and micronutrients. Phe tolerance (mg phe/kg body weight/day) is the amount of phe those with PKU can consume and maintain acceptable blood phe levels; it requires individual assessment because of varying phenylalanine hydroxylase activity. The objective was to reassess phe tolerance in 8 adults with PKU considering phe requirements, blood phe levels, genotype and phe tolerance at 5 years of age. Subjects had not received a personalized assessment of phe tolerance in several years, and 5 subjects were overweight, body mass index (BMI) 25–28. With the guidance of a metabolic dietitian, 7 subjects increased phe tolerance (by 15–173%) without significantly increasing blood phe concentration. Increased phe tolerance was associated with both improved dietary compliance and inadequate phe intake at the onset of the protocol compared with current requirements. Improved dietary compliance reflected increased consumption of protein equivalents from amino acid formula and increased frequency of formula intake, from 2.2 to 3 times per day. Predictors of higher final phe tolerance following reassessment included being male and having a lower BMI (R2=0.588). This suggests that the rising trend of overweight and obesity may affect assessment of phe tolerance in adults. Therefore, interaction with the metabolic dietitian to reassess phe tolerance in relation to body mass is essential throughout adulthood to insure adequate intake of phe to support protein synthesis and prevent catabolism.
PMCID: PMC2783926  PMID: 19747868
PKU; amino acid requirements; genotype-phenotype relationship; low-phenylalanine diet

Results 1-5 (5)